50014-222-

0051750

CORRESPONDENCE DISTRIBUTION COVERSHEET

Author

Ruth A. Esch, WMH 373-4314

Addressee

J. H. Kessner, LMHC H9-03

Correspondence No. WMH-9955518

.

INTERIM RESULTS FOR THE 233-S PLUTONIUM CONCENTRATION FACILITY

(233-S) SAMPLES - SDG 3

Approval	Date	Name ·	Location	w/ati
		Correspondence Control	A3-01	X
	/	Waste Management Federal Serv	ices of Hanford, Inc	<u>.</u>
11/11	1. 11	E. S. Aromi	H6-10	
ND St. 1	In 8/12/9	P_ S. N. Bakhtiar	T6-12	
117	S.N. Bakhtia	B. V. Burrow	G1-32	•
		R. A. Esch	T6-12	X
11.11		R. J. Giroir	T6-14	
UBdt.	8/12/99	D. B. Hardy	T6-12	
///	7	M. F. Marcus	G1-32	
		J. O. Perkins	G1-31	
		L. F. Perkins	T6-14	
\wedge	•	T. J. Plush	G1-31	
~ 11	. , , , ,	K. L. Powell	S3-30	
Il tale	ck 8/12/9	J. R. Prilucik	T6-14	
		D. L. Renberger	H6-32	
		C. M. Seidel	S3-30	
		R. T. Wilde	G1-36	•
		JRP/RAE File/LB		X

WASTE MANAGEMENT FEDERAL SERVICES OF HANFORD, INC. A WASTE MANAGEMENT COMPANY

P.O. Box 700 Richland, WA 99352-0700

August 12, 1999

Ms. J. H. Kessner, Program Manager Analytical Services Bechtel Hanford Richland, Washington 99352

WHC-9955518

Dear Ms. Kessner:

INTERIM RESULTS FOR THE 233-S PLUTONIUM CONCENTRATION FACILITY (233-S) SAMPLES - SDG 3

References: (1) Letter, T. E. Logan, BHI, to J. L. Jacobsen, FDH, "Letter of Instruction for the 233-S Plutonium Concentration Facility Sample Analysis," 047467, dated November 24, 1998.

> (2) HNF-SD-CD-QAPP-016, 222-S Laboratory Quality Assurance Plan, Rev. 3C, Waste Management Hanford, Richland, Washington.

This letter presents the interim results for one sample that was received from the 233-S Facility on March 8, 1999 and the ten samples that were received on May 10, 1999. Sample B0TW23 was originally considered as part of the second sample delivery group (SDG2). However, due to problems with removing the activity from the surface of the sample, a message was received to allow this sample to be considered as part of SDG3. The other samples that are considered SDG3 are B0VF98, B0VF99, B0VFB0, B0VFB1, B0VFB2, B0VFB3, B0VFB4, B0VFB5, B0VFB6 and B0VFC2. The limited set of analyses indicated on the attached copies of the chain of custody (COC) forms were performed in accordance with Reference (1). The Interim Data Summary report is included as Attachment 1.

Reanalyses are still in progress for three samples. Samples B0VCW3 (S99M000210) and B0VFB6 (S99M000224) required reanalysis for 90Sr, and sample B0TW23 (\$99M000217) required reanalysis for neptunium-237. The reanalysis results will be presented in the report for SDG4.

For sample \$99M000217, the actinides were analyzed by alpha energy analysis (AEA) rather than by inductively coupled plasma/mass spectrometry (ICP/MS) because of delays due to instrument problems.

Ms. J. H. Kessner Page 2 August 12, 1999

Sample Appearance

B0TW23

This sample was a metal disk cut from ductwork. One side of the sample was coated with paint and the other had a rust-like coating. Since problems were encountered with high concentrations of metals dissolved from etching similar samples with a combination of hydrochloric acid (HCl) and nitric acid (HNO₃), the first attempt at etching the surface of the metal was made using 2% (v/v) HNO₃. The alpha activity on the piece of metal prior to the first etching was >700,000 counts per minute (cpm). Following the nitric acid etching there was still 550,000 cpm of alpha remaining on the surface of the metal. A total alpha/total beta (AT/TB) analysis was performed on that 50 mL of solution (S99M000082). A second etching was performed using the SW-846 acid digest procedure for metals analysis. This procedure uses a combination of HCl and HNO₃. There was 14,000 cpm of alpha activity remaining on the sample following the second etching. The remainder of sample S99M000082 was added to the solution from the second etching before it was brought to a final volume of 100 mL (S99M000217). A full set of radionuclide analyses was performed on the new solution. Although indicated as μ Ci/mL, the analytical results were reported per total solution volume (i.e. μ Ci/sample).

B0VF98

This sample was a piece of pipe that was approximately $\frac{1}{2}$ inch (1.4 cm) in diameter and approximately 4 inches (11 cm) in length. The interior of the pipe was leached with 4M HNO₃. Two portions of acid were added to the pipe; 18 mL for the first day and 15 mL the second day. Each portion was allowed to stand in the pipe overnight and were combined for a final leachate volume of 33 mL. The analytical results were reported as $\mu\text{Ci/mL}$ of solution.

B0VF99

This sample was a piece of pipe that was approximately 1 inch (2.5 cm) in diameter and approximately 7 inches (17.9 cm) in length. The interior of the pipe was leached with 4M HNO₃. Two portions of acid were added to the pipe; 80 mL for the first day and 80 mL the second day. Each portion was allowed to stand in the pipe overnight. For this pipe, it was difficult to get a good fit for the stoppers. From the first 80 mL, only 44 mL were recovered (sample S99M000250). For the second addition, the pipe was turned over in case the other stopper had a better fit. From the second 80-mL addition, only 19 mL was recovered (sample S99M000260). Since some material was lost from each addition, the two portions were submitted as separate samples.

After the acid was removed from the pipe, the solutions were rust/brown in color with rust-like particles settled on the bottom. Therefore, prior to analysis the samples were transferred to beakers, hydrochloric acid was added and they were heated to dissolve the solids. Sample S99M000250 was diluted to a final volume of 100 mL, S99M000260 was diluted to 50 mL. The analytical results were reported as $\mu\text{Ci/mL}$ of solution.

Ms. J. H. Kessner Page 3 August 12, 1999

B0VFB0

Sample was a piece of pipe that was approximately 1.6 inches (4.2 cm) in diameter and approximately 5 inches (13.9 cm) in length. The interior of the pipe was leached with 4M HNO₃. Two 150-mL portions of acid were added to the pipe. Each portion was allowed to stand in the pipe overnight and were combined for a final leachate volume of 300 mL. The analytical results were reported as μ Ci/mL of solution.

B0VCW3

This sample was a blue liquid analyzed as a direct liquid for full radionuclide analysis as requested on the chain of custody forms for B0VCW3 and B0VFB2, identified as being identical to sample B0VCW3. The results from the gamma energy analysis (GEA) are reported twice. One set of data, without standard and blank, was reported for the radscreen. Although the units are indicated as μ Ci/mL, the GEA radscreen results are actually μ Ci/sample based on a 5 mL sample size, as indicated on the Request for Sample Analysis (RSA) form submitted with the samples. All other result units are correct as reported.

B0VFB2

This is a second portion from the same sample point as sample B0VCW3. The inorganic analyses (pH, mercury (Hg), ion chromatography (IC) and inductively coupled plasma (ICP)) were performed on this sample. The result units are correct as reported.

B0VFB1

This sample was a clear liquid analyzed as a direct liquid for all radionuclide and inorganic analyses. The original analysis request on the chain of custody form was for a GEA, total alpha (AT) and total beta (TB) radscreen only. Two correspondences (first two in Attachment 2) received after the samples were delivered to the laboratory requested full protocol for all radionuclide and inorganic constituents, as stipulated in the LOI. Therefore, there are two sets of results reported for GEA, AT and TB analyses. For the full protocol analyses, the result units are correct as reported. For the "radscreen only" analyses, there are no results for standards and blanks. The result units for GEA results are μ Ci/sample rather than μ Ci/mL, as indicated in the Interim Data Summary Report. A 20-mL sample size was used for calculation based on information provided on the chain of custody.

B0VFB3

This sample was a liquid analyzed for GEA, AT and TB radscreen only. These results are presented without standard recovery or blank results. Although the units are indicated as μ Ci/mL, for the GEA radscreen the results are actually μ Ci/sample. A 20-mL sample size was used for calculation based on information provided on the chain of custody.

B0VFB4

This sample was a liquid analyzed for GEA, AT and TB radscreen only. These results are presented without standard recovery or blank results. Although the units are indicated

Ms. J. H. Kessner Page 4 August 12, 1999

as $\mu Ci/mL$, for the GEA radscreen the results are actually $\mu Ci/sample$. A 20-mL sample size was used for calculation based on information provided on the chain of custody.

B0VFB5

This sample was a liquid analyzed for GEA, AT and TB radscreen only. These results are presented without standard recovery or blank results. Although the units are indicated as $\mu \text{Ci/mL}$, for the GEA radscreen the results are actually $\mu \text{Ci/sample}$. A 20-mL sample size was used for calculation based on information provided on the chain of custody.

B0VFB6

This sample was a liquid identified for GEA, AT and TB radscreen only. These results are presented without standard recovery or blank results. Although the units are indicated as $\mu \text{Ci/mL}$, for the GEA radscreen the results units are $\mu \text{Ci/sample}$ rather than $\mu \text{Ci/mL}$ as indicated in the Interim Data Summary Report. A 20-mL sample size was used for calculation based on information provided on the chain of custody.

A correspondence received after the samples were delivered to the laboratory, third correspondence in Attachment 2, requested full protocol for all radionuclide and inorganic constituents. The correspondence indicated that this sample could be used to supplement the identical portion B0VFC2. Therefore, there are two sets of results reported for GEA, AT and TB analyses. For the full protocol analyses, the result units are correct as reported.

B0VFC2

This is a second portion from the same sample point as sample B0VFB6. The inorganic analyses (pH, Hg, IC and ICP) were performed on this sample. The result units are correct as reported.

Analytical Results

Holding Times

The SW-846 holding times were not met for Hg (28 days), pH (24 hours), nitrate, and nitrite (48 hours). The holding times were missed for several reasons. The request for radscreen and the internal laboratory requirement for alpha analysis prior to all other analyses caused the very short holding times to be missed. Instrument problems and delays in scheduling a vendor for instrument repair caused the Hg holding time to be missed.

Quality Control Results

All standard recoveries were acceptable in accordance with Reference (2). Low levels of contamination from fluoride (F) and strontium-90 (90 Sr) were detected in method blanks for the direct liquid analyses. The AT/TB method blank analyzed with the second

Ms. J. H. Kessner Page 5 August 12, 1999

leachate from the pipe B0VF99 (S99M000260) had low levels of both alpha and beta activity detected. For the F, AT and TB, the level of contamination detected in the blank was much less than 5% of the sample result or "less than" result reported for the samples and was considered insignificant.

The method blank reported for the ⁹⁰Sr analysis indicated that a significant activity of ⁹⁰Sr was present. As discussed below, the blank result was reported based on the dilution factor of the first sample on the worklist (10201 in this case). Two samples on the worklist were sent out for reanalysis because the sample size used was too small and the counts of the blank were significant with respect to the count rate of the samples. The third sample, S99M000219 (B0VFB1) was analyzed undiluted, but a small sample size was used because of limited volume of that sample. The sample result for ⁹⁰Sr for this sample was less than the detection limit, indicating that the sample was not contaminated during the analysis. Therefore, even though the blank had a higher count rate than the sample, no reanalysis was requested for S99M000219.

Samples B0VCW3 (S99M000210) and B0VFB6 (S99M000224) will be reanalyzed for 90 Sr using a larger sample size and will be reported with SDG4. The results from the first analysis were 1.52e-01 μ Ci/mL (S99M000210) and 1.84e-04 μ Ci/mL (S99M000224). These results are subject to change upon reanalysis.

As previously reported (letter WMH-9953558), a significant level of beta activity was reported for the acid digest preparation blank for sample B0TW25/28 (S99M000096). The reported activity for the blank was approximately 46% of the activity reported for the sample. Although a reanalysis was requested, closer examination of the data indicated that this might not be necessary. Examination of the actual count rate of the blank versus that of the sample indicated that the blank activity was only 0.46% of the sample activity. The customary method of reporting the blank, to indicate significance with respect to the sample result, is to correct the blank result using the dilution factor associated with the first sample on the worklist. That sample had a dilution factor of 10201, where sample S99M000096 had a dilution factor of only 101. Considering the uncorrected blank activity with respect to sample S99M000096, the contamination was considered insignificant and the request for reanalysis was cancelled.

Practical Quantitation Limits (PQL)

For most analytes, the laboratory was unable to meet the practical quantitation limits (PQLs) listed in the LOI. For the GEA analytes, the presence of Cs-137 and the limited volume of sample available for analysis resulted in high detection limits. For samples submitted for radscreen only, the entire sample was used for the GEA analysis. For the separation/AEA analysis of plutonium, americium and curium, the presence of activity of one or more of the isotopes required sample dilutions that gave higher detection limits for the undetected isotopes.

Ms. J. H. Kessner Page 6 August 12, 1999

For sample B0VFB1 (S99M000219), the PQLs were not met because of dilutions required due to limited sample volume to perform all of the requested analyses. For samples B0VFB2 and B0VFC2, PQLs for ICP and IC analyses were not met because of dilutions required for high concentrations of some analytes present in those samples. High concentrations of sodium or iron in the samples required dilution to prevent problems from solids in the ICP analysis. For IC analysis, high concentrations of nitrate required dilutions to prevent saturation of the column.

Attachments

Attachment 1: Interim Data Summary Report

Attachment 2: Correspondence

Attachment 3: Sample Breakdown Diagrams

Attachment 4: Chain-of-Custody and Request for Sample Analysis forms

If you have any questions, please call me at 373-4314.

Sincerely,

R. A. Esch, Project Coordinator

With and

222-S Laboratory Analytical Production

Waste Management Laboratory

cef

Attachments (4)

10-aug-1999 15:36:40 A-0002-1

CORE NUMBER: n/a SEGMENT #: BOTW23

SEGMENT PORTION: Coupon Acid Leachate

ACTU Leachate		,								
A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
Alpha in Liquid Samples	uCi/mL	92.34	<2.18e-03			n/a	n/a	n/a		
Beta in Liquid Samples	uCi/mL_	103.5	<1.04e-02			n/a	n/a	n/a	1.20e-02	2.05E+00
Pu-239/240 by TRU-SPEC Resin	uCi/mL	101.6	<3.52e-01	12.00		n/a	n/a	n/a		1.80E+00
Pu-238 by Ion Exchange	uCi/mL	n/a	<3.52e-01	<7.91e-01		n/a	n/a			5.85E+00
Np237 by TTA Extraction	uCi/mL	n/a	n/a							
Cobalt-60 by GEA	uCi/mL	111.0				****				
Antimony-125 by GEA	uCi/mL	n/a			**	*****	$\overline{}$			n/a
Cesium-134 by GEA	uCi/mL	n/a								
Cesium-137 by GEA	uCi/mL	103.3					_			4.15
Europium-152 by GEA	uCi/mL	n/a		111111111111111111111111111111111111111						
Europium-154 by GEA	uCi/mL	n/a								n/a
Europium-155 by GEA	uCi/mL				*******					n/a
Radium-226 by GEA										
Actinium-228 by GEA		1								n/a
Am-241 by Extraction		1								3.21E+00
Cm-243/244 by Extraction		7,000	***************************************							1.00E+02
										1.34E+00
Beta in Liquid Samples	uCi/mk	107.8	<2 _× 80e×02	/.21e-U1	n/a	n/a	n/a	n/a	4. IVE-UZ	5.54E+00
3 3 1	Beta in Liquid Samples Pu-239/240 by TRU-SPEC Resin Pu-238 by Ion Exchange Np237 by TTA Extraction Cobalt-60 by GEA Antimony-125 by GEA Cesium-134 by GEA Cesium-137 by GEA Europium-152 by GEA Europium-154 by GEA Europium-155 by GEA Europium-155 by GEA Actinium-226 by GEA Actinium-228 by GEA Americium-241 by GEA Americium-241 by GEA Am-241 by Extraction Cm-243/244 by Extraction Alpha in Liquid Samples	Alpha in Liquid Samples uCi/mL Beta in Liquid Samples uCi/mL Pu-239/240 by TRU-SPEC Resin uCi/mL Pu-238 by Ion Exchange uCi/mL Np237 by TTA Extraction uCi/mL Cobalt-60 by GEA uCi/mL Antimony-125 by GEA uCi/mL Cesium-134 by GEA uCi/mL Europium-152 by GEA uCi/mL Europium-154 by GEA uCi/mL Europium-155 by GEA uCi/mL Europium-155 by GEA uCi/mL Europium-246 by GEA uCi/mL Actinium-228 by GEA uCi/mL Actinium-241 by GEA uCi/mL Americium-241 by GEA uCi/mL Americium-243/244 by Extraction uCi/mL Alpha in Liquid Samples uCi/mL Beta in Liquid Samples	Alpha in Liquid Samples Uci/mL 92.34 Beta in Liquid Samples Uci/mL 103.5 Pu-239/240 by TRU-SPEC Resin Uci/mL 101.6 Pu-238 by Ion Exchange Uci/mL n/a Np237 by TTA Extraction Uci/mL n/a Cobalt-60 by GEA Uci/mL 111.0 Antimony-125 by GEA Uci/mL n/a Cesium-134 by GEA Uci/mL n/a Cesium-137 by GEA Uci/mL n/a Europium-152 by GEA Uci/mL n/a Europium-154 by GEA Uci/mL n/a Europium-155 by GEA Uci/mL n/a Europium-155 by GEA Uci/mL n/a Europium-226 by GEA Uci/mL n/a Radium-226 by GEA Uci/mL n/a Actinium-228 by GEA Uci/mL n/a Actinium-241 by GEA Uci/mL n/a Americium-241 by GEA Uci/mL n/a Americium-241 by Extraction Uci/mL n/a Alpha in Liquid Samples Uci/mL n/a Beta in Liquid Samples Uci/mL n/a Liquid Samples Uci/mL n/a Beta in Liquid Samples Uci/mL n/a Liquid Samples Uci/mL n/a Liquid Samples Uci/mL n/a Beta in Liquid Samples Uci/mL n/a Liquid Samples Uci/mL n/a Beta in Liquid Samples Uci/mL n/a Beta in Liquid Samples Uci/mL n/a Liquid Samples Uci/mL n/a	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03 13.10 Beta in Liquid Samples UCi/mL 103.5 <1.04e-02 1.530 Pu-239/240 by TRU-SPEC Resin UCi/mL 101.6 <3.52e-01 12.00 Pu-238 by Ion Exchange UCi/mL n/a <3.52e-01 <7.91e-01 Np237 by TTA Extraction UCi/mL n/a n/a Cobalt-60 by GEA UCi/mL 111.0 <4.40e-05 <4.16e-05 Antimony-125 by GEA UCi/mL n/a <1.09e-04 <1.24e-04 Cesium-134 by GEA UCi/mL n/a <3.51e-05 <3.89e-05 Cesium-137 by GEA UCi/mL 103.3 <6.73e-05 2.12e-03 Europium-152 by GEA UCi/mL n/a <6.94e-05 88.77e-03 Europium-154 by GEA UCi/mL n/a <1.35e-04 <1.27e-04 Europium-155 by GEA UCi/mL n/a <8.80e-05 <7.45e-04 Radium-226 by GEA UCi/mL n/a <8.30e-05 <7.45e-04 Actinium-228 by GEA UCi/mL n/a <3.30e-04 <7.45e-04 Americium-241 by GEA UCi/mL n/a <3.30e-04 <7.45e-04 Americium-241 by GEA UCi/mL n/a <3.30e-04 <7.45e-04 Americium-241 by Extraction UCi/mL n/a <3.50e-04 <7.45e-01 <7.25c Cm-243/244 by Extraction UCi/mL n/a <2.30e-01 <3.49e-01 <7.25c Cm-243/244 by Extraction UCi/mL n/a <3.46e-01 <7.25c <7	Alpha in Liquid Samples	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03 13.10 n/a n/a Beta in Liquid Samples UCi/mL 103.5 <1.04e-02	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03 13.10 n/a n/a n/a	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03 13.10 n/a n/a n/a n/a n/a	Alpha in Liquid Samples UCi/mL 92.34 <2.18e-03 13.10 n/a n/a n/a n/a 3.00e-03

CORE NUMBER: n/a SEGMENT #: BOVF98

SEGMENT PORTION: ACID LEACH - 33 mL

FORTION. ACIE	D ECACH 33 IIIC										
Sample#	R A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000249	Pu-239/240 by TRU-SPEC Resin	uCi/mL	96.83	<1.98e-02	1.090	n/a	n/a	n/a		5.40e-02	1.60E+00
S99M000249	Pu-238 by Ion Exchange	uCi/mL	n/a			n/a	n/a	n/a	n/a	5.40e-02	4.44E+00
S99M000249	1.	uCi/mL	85.28	<4.86e-05		∞n/a	n/a	n/a	n/a	4.96e-05	3.88E+02
S99M000249		uCi/mL	110.2	<1.73e-05		n/a	n/a	n/a	n/a	1.77e-05	n/a
S99M000249		uCi/mL	n/a			n/a	.n/a	n/a	n/a	4.88e-05	n/a
S99M000249		uCi/mL	n/a	The second secon		° n/a		n/a	n/a	1.68e-05	n/a
S99M000249	14	uCi/mL	101.2	<2.53e-05		, 0000000 ve	🌦 n/a	n/a	n/a	2.18e-05	n/a
S99M000249		uCi/mL					‱ n/a	n/a	n/a	3.68e-05	n/a
S99M000249		uCi/mL		<5.48e-05		‱ m/a	n/a	n/a	n/a	4.98e-05	n/a
S99M000249		uCi/mL		<4.03e-05			n/a	n/a	n/a	5.04e-05	n/a
S99M000249		uCi/mL		<3.02e:04			n/a	n/a	n/a	3.18e-04	n/a
S99M000249	Actinium-228 by GEA	uCi/mL		<8.37e-05		-00000	n/a	n/a	n/a	7.72e-05	n/a
S99M000249	Americium-241 by GEA	uCi/mL		< 9. 41e-05		m/a	n/a	n/a	n/a	n/a	0.650
S99M000249		uCi/mL				n/a	n/a	n/a	n/a	5.30e-02	3.52E+00
S99M000249	Cm-243/244 by Extraction	uCi/mL	n/a			n/a	n/a	n/a	n/a	5.30e-02	1.00E+02
\$99M000249	Alpha in Liquid Samples	uCi/mL	96.00		1.220	n/a	n/a	n/a	n/a	1.59e-04	6.01E-01
S99M000249	Beta in Liquid Samples	uCi/mL	108,3	<2.79e+06	7.43e-02	n/a	n/a	n/a	n/a	7.08e-04	2.04E+00

CORE NUMBER: n/a SEGMENT #: BOVF99

SEGMENT PORTION: ACID LEACH - 100 mL

	1 1				1				W		
Sample#	R A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000250	Pu-239/240 by TRU-SPEC	Resin uCi/mL	96.83	<1.98e-02	6.38e-03	n/a	n/a	n/a	n/a	2.88e-04	1.49E+00
S99M000250	Pu-238 by Ion Exchange	uCi/mL	n/a	<1.98e-02	<2.88e-04	n/a	n/a	n/a	n/a	2.88e-04	4.18E+00
S99M000250	Np237 by TTA Extraction	uCi/mL	85.28	<4.86e-05	<2.38e-05	"n/a	n/a	n/a	n/a	4.96e-05	3.52E+02
S99M000250	Cobalt-60 by GEA	uCi/mL	110.2	<1.73e-05	<1.92e-05	n/a	n/a	n/a	n/a	1.92e-05	n/a
S99M000250	Antimony-125 by GEA	uCi/mL	n/a	<4.69e-05	<4.59e-05	eVn°	n/a	n/a	n/a	4.59e-05	n/a
S99M000250	Cesium-134 by GEA	uCi/mL	n/a	<1.61e-05	<1.76e-05	n/a		n/a	n/a	1.76e-05	n/a
S99M000250	Cesium-137 by GEA	uCi/mL	101.2	<2.53e-05	<2.77e-05			n/a	n/a	2.77e-05	n/a
S99M000250	Europium-152 by GEA	uCi/mL_	. n/a	<3.25e-05			m/a	n/a	n/a	3.20e-05	n/a
S99M000250	Europium-154 by GEA	uCi/mL	n/a	<5.48e-05	%5.54e+05	n/a	m/a	n/a	n/a	5.54e-05	n/a
S99M000250	Europium-155 by GEA	uCi/mL	n/a	<4.03e-05	3,81e-05		n/a	n/a	n/a	3.81e-05	n/a
S99M000250	Radium-226 by GEA	uCi/mL	n/a	<3.02e+04	<2,80e-04		n/a	n/a	n/a	2.80e-04	n/a
S99M000250	Actinium-228 by GEA	uCi/mL	n/a	<8.37e-05		n/a	n/a	n/a	n/a	8.89e-05	. n/a
S99M000250	Americium-241 by GEA	uCi/mL		≪9.41e-05	0,000,000	n/a	n/a	n/a	n/a	n/a	6.98
S99M000250	Am-241 by Extraction	uCi/mL	94,39	%2. 02e-02	2.44e+03	n/a	n/a	n/a	n/a	1.91e-04	2.21E+00
S99M000250	Cm-243/244 by Extraction	n uCi/mL	,,,,,,,,,,,/a	<2.02e-02	1.91e-04	n/a	n/a	n/a	n/a	1.91e-04	1.00E+02
S99M000250	Alpha in Liquid Samples	uCi/mL	96.00	<4.55e-07	8,74e-03	n/a	n/a	n/a	n/a	7.88e-07	5.05E-01
\$99M000250	Beta in Liquid Samples	uCi/mL	108,3	<2.79e+06	6.45e-04	n/a	n/a	n/a	n/a	3.51e-06	1.49E+00

ACID LEACH - 50 mL: ACID LEACH - 50 mL

	\neg			l ****								
Sample#		Analyte	Unit	Standard %		Result		Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000260		Pu-239/240 by TRU-SPEC Resin®		96083	<1.98e-02	4.32e-03		n/a	n/a	n/a	1.81e-04	1.41E+00
S99M000260			uCi/mL	n/a	<1.98e-02	<1.81e-04	n/a	n/a	n/a	n/a	1.81e-04	3.44E+00
S99M000260				85.28	<4.86e-05	<2.76e-05	n/a	n/a	n/a	n/a	4.96e-05	5.00E+02
S99M000260		Cobalt-60 by GEA	1/20/2/	110.2	<1.73e-05	<1.82e-05	n/a	n/a	n/a	n/a	1.82e-05	n/a
S99M000260		Antimony-125 by GEA	uCi ZmL	n/a		<4.73e-05	n/a	n/a	n/a	n/a	4.73e-05	n/a
S99M000260			uci/mL	n/a			n/a	n/a	n/a	n/a	1.70e-05	
S99M000260		Cesium-137 by GEA	GC:/mt	101.2	<2.53e-05		n/a	n/a	n/a	n/a	3.91e-05	
S99M000260		Europium-152 by GEA	uCi/mL	n/a	<3.25e-05	<3.35e-05	n/a	n/a	n/a	n/a	3.35e-05	
S99M000260		Europium-154 by GEA	uCi/mL	n/a	<5.48e-05	<6.13e-05	n/a	n/a	n/a	n/a	6.13e-05	n/a
S99M000260		Europium-155 by GEA	uCi/mL	n/a	<4.03e-05		n/a	n/a	n/a	n/a	3.98e-05	n/a
S99M000260		Radium-226 by GEA	uCi/mL	n/a		<2.99e-04	n/a	n/a	n/a	n/a	2.99e-04	n/a
S99M000260	\top	Actinium-228 by GEA	uCi/mL	n/a	<8.37e-05	<8.88e-05	n/a	n/a	n/a	n/a	8.88e-05	n/a
S99M000260		Americium-241 by GEA	uCi/mL	n/a	<9.41e-05	1.32e-03	n/a	n/a	n/a	n/a	n/a	12.2
S99M000260		Am-241 by Extraction	uCi/mL	94.39	<2.02e-02	9.55e-04	n/a	n/a	n/a	n/a	8.95e-05	2.39E+00
S99M000260	Τ.	Cm-243/244 by Extraction	uCi/mL	n/a	<2.02e-02	<8.95e-05	n/a	n/a	n/a	n/a	8.95e-05	1.00E+02
S99M000260		Alpha in Liquid Samples	uCi/mL	98.80	7.24e-07	5.28e-03	n/a	n/a	n/a	n/a	9.32e-07	6.45E-01
S99M000260		Beta in Liquid Samples	uCî/mL	108.7	2.06e-06	3.36e-04	n/a	n/a	n/a	n/a	3.55e-06	2.10E+00

CORE NUMBER: n/a SEGMENT #: BOVFB0

SEGMENT PORTION: ACID LEACH - 300 mL

PORTION: ACI	D LEA	1CH - 200 MF		-y								
Sample#	R A	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000251		Pu-239/240 by TRU-SPEC Resin	uCi/mL	96.83	<1.98e-02	2.07e-03	n/a	n/a	n/a			1.84E+00
S99M000251		Pu-238 by Ion Exchange	uCi/mL	n/a	<1.98e-02	1.94e-04	n/a	n/a	n/a	n/a	1.40e-04	4.51E+00
S99M000251		Np237 by TTA Extraction	uCi/mL .	85.28	<4.86e-05	<2.38e-05	_{∞s} n/a	n/a	n/a	n/a	4.96e-05	5.00E+02
S99M000251		Cobalt-60 by GEA	uCi/mL	110.2	<1.73e-05	<1.76e-05	n/a	n/a	n/a	n/a	1.76e-05	n/a
S99M000251		Antimony-125 by GEA	uCi/mL	n/a	<4.69e-05	<4.55e-05	ss n/a	n/a	n/a	n/a	4.55e-05	n/a
S99M000251		Cesium-134 by GEA	uCi/mL	n/a	<1.61e-05	<1.70e-05	n/a	n/a	n/a	n/a	1.70e-05	n/a
S99M000251		Cesium-137 by GEA	uCi/mL	101.2	<2.53e-05	<4.08e-05		∭ n/a	n/a	n/a	4.08e-05	n/a
S99M000251		Europium-152 by GEA	uCi/mL	n/a					n/a	n/a	3.33e-05	n/a
S99M000251		Europium-154 by GEA	uCi/mL	n/a		%4.72e+05	m/a	n/a	n/a	n/a	4.72e-05	n/a
S99M000251		Europium-155 by GEA	uCi/mL			≪4,30e-05		n/a	n/a	n/a	4.30e-05	n/a
S99M000251		Radium-226 by GEA	uCi/mL		<3.02e+04			n/a	n/a	n/a	2.97e-04	n/a
S99M000251		Actinium-228 by GEA	uCi/mL		<8.37e-05			n/a	n/a	n/a	8.60e-05	n/a
S99M000251		Americium-241 by GEA	uCi/mL		≪9.41e-05		n/a	n/a	n/a	n/a	n/a	15.6
S99M000251		Am-241 by Extraction	uCi/mL	94, 39	%2. 02e-02	*****	n/a	n/a	n/a	n/a	1.13e-04	2.97E+00
S99M000251		Cm-243/244 by Extraction	uCi/mL	n/a	<2.02e-02		n/a	n/a	n/a	n/a	1.13e-04	1.00E+02
S99M000251		Alpha in Liquid Samples	uCi/mL	96.00		2.64e-03	n/a	n/a	n/a	n/a	7.88e-07	9.02E-01
S99M000251		Beta in Liquid Samples	uCi/mL	108_3	<2.79e-06	1.88e-04	n/a	n/a	n/a	n/a	3.51e-06	2.89E+00

CORE NUMBER: n/a SEGMENT #: BOVCW3

RTION: Liqu	na T		I							1		
Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000210		Strontium-89/90 High Level	uCi/mL	n/a	n/a		n/a	n/a	n/a		7.00e-02	
S99M000210		Pu-239/240 by TRU-SPEC Resin	uCi/mL	103.2	<7.240	3.30e+02	n/a	n/a	n/a	n/a	18.60	1.90E+00
S99M000210		Pu-238 by Ion Exchange	uCi/mL	n/a	<7.240	< 18.60	.⊲n/a	n/a	n/a	n/a	18.60	6.00E+00
S99M000210		Np237 by TTA Extraction	uCi/mL	85.28	<4.86e-05	6.87e-03	////n/a	n/a	n/a	n/a	4.96e-05	2.05E+00
S99M000210		Cobalt-60 by GEA	uCi/mL	110.2	<1.73e-05	<6.19e-05	m/a	n/a	n/a	n/a	6.19e-05	n/a
S99M000210		Antimony-125 by GEA	uCi/mL	n/a			n/a	n/a	n/a	n/a	2.75e-04	n/a
S99M000210	_	Cesium-134 by GEA	uCi/mL ·	n/a				m/a	n/a	n/a	6.59e-05	n/a
S99M000210		Cesium-137 by GEA	uCi/mL	101.2	<2.53e-05	3.35e+04		‱ n/a	n/a	n/a	_: n/a	33.8
S99M000210	1	Europium-152 by GEA	uCi/mL	n/a				‱ n/a	n/a	n/a	7.58e-04	n/a
S99M000210		Europium-154 by GEA	uCi/mL	n/a		<1.84e-04		n/a	n/a	n/a	1.84e-04	n/a
S99M000210		Europium-155 by GEA	uCi/mL	n/a					n/a	n/a	2.00e-03	n/a
S99M000210		Radium-226 by GEA	uCi/mL	n/a	<3:02e=04				n/a		3.00e-03	n/a
S99M000210		Actinium-228 by GEA	uCi/mL	n/a	∞8.37e-05		n/a	n/a	n/a		3.19e-04	n/a
S99M000210		Americium-241 by GEA	uCi/mL	n/a			n/a	n/a	n/a	n/a	n/a	0.0700
S99M000210		Cobalt-60 by GEA	uCi/mL	.‱n/a	n/a	%2°14e*04	n/a	n/a	n/a		2.14e-04	n/a
S99M000210		Antimony-125 by GEA	uCi/mL	<i>.⁄</i>	>>>> n/a		n/a		n/a		1.00e-03	n/a
S99M000210		Cesium-134 by GEA	uCi/mL '	n/a			n/a	n/a	n/a		2.42e-04	n/a
S99M000210		Cesium-137 by GEA	uCi/mL	√n/a	n/a	2.33e-03	n/a	n/a	n/a		n/a	20.7
S99M000210		Europium-152 by GEA	uCi/mL	fi/a	" 'n/a		n/a	n/a	n/a	n/a	5.00e-03	n/a
S99M000210		Europium-154 by GEA	uC12mb	‱m,/a		<7.44e-04	n/a	n/a	n/a	n/a	7.44e-04	n/a
S99M000210		Europium-155 by GEA	t#C1/mL	11/a			n/a	n/a	n/a	n/a	1.70e-02	n/a
S99M000210		Radium-226 by GEA	uCi/mL ****	n/a	n/a		n/a	n/a	n/a	n/a	1.60e-02	n/a
S99M000210		Actinium-228 by GEA	uCi/mL	n/a	n/a		n/a	n/a	n/a	n/a	1.00e-03	n/a
S99M000210		Americium-241 by GEA	BCi/mL ₩		n/a	4.08e+02	n/a	n/a	n/a	n/a	n/a	0.0600
S99M000210		Am-241 by Extraction	Marcos y min	89.16	<6.760	68.30	n/a	n/a	n/a	n/a	11.30	2.91E+00
S99M000210		Cm-243/244 by Extraction	Luci znL	n/a	<6.760		n/a	n/a	n/a	n/a	11.30	1.00E+02
S99M000210		Alpha in Liquid Samples	uci/nt	92.83	<3.98e-02	3.61e+02	n/a	n/a	n/a	n/a	8.80e-02	7.83E-01
S99M000210		Beta in Liquid Samples	uci/mt	102.5	<1.57e-01	19.40	n/a	n/a	n/a	n/a	2.59e-01	2.77E+00

CORE NUMBER: n/a SEGMENT #: BOVFB2

S99M000220 D Iron-ICP-Acid Dil. Ug/mL 100.6 <3,00e-01 3,82e+04 n/a	ORTION: Liqu	id				γ		1					
SPMM000220 Mercury by CVAA (PE) with FIAS lug/ml. 94.88 47.00e-05 3.81e-01 17/8	Sample# I	, A#	Analyta	Unit	Standard %	Rlank	Pacult	Dunlicate	Average	DDD %	Snk Bac %	Dot Limit	Count Ecry
SSPH000220 DI Direct Delt N/a N/a N/a N/a N/a N/a 1,00e-02 N/a		17.77											
SSPH000220 D. STILVET-ICP-AcId DII. Ug/ml. 98.00 5.00e-02 2.25e-05 n/a n/a n/a 1.010 n/a SSPH000220 D. Aluminium-IPP-AcId DII. Ug/ml. 100.4 5.100e-01 5.10.10 10/4 1.00e-01 5.00e-02		+											
SSPH000220 D. Arsenic-IP-Acid Dil. Ug/ml 100.4 4.1.00e-01 4.1.01e 101. W/A n/A n/A n/A 1.0.10 n/A SSPH000220 D. Bronn-ICP-Acid Dil. Ug/ml 100.4 4.1.00e-02 4.5.00e-02 4.5.050 n/A n/A n/A n/A 5.050 n/A SSPH000220 D. Borro-ICP-Acid Dil. Ug/ml 97.40 4.1.00e-02 4.5.05e-01 n/A n/A n/A n/A 5.050 n/A SSPH000220 D. Berlium-ICP-Acid Dil. Ug/ml 97.40 4.1.00e-01 4.5.05e-01 n/A n/A n/A n/A 5.05e-01 n/A SSPH000220 D. Berlium-ICP-Acid Dil. Ug/ml 99.40 4.1.00e-01 4.5.05e-01 n/A n/A n/A n/A n/A n/A n/A n/A n/A SSPH000220 D. Berlium-ICP-Acid Dil. Ug/ml 101.2 5.00e-01 4.5.05e-01 n/A		n											
SSPH000220 D. Arsenic - ICP-Acid Dil. Ug/ml. 100.4 <1.00e-01 < 10.10 w/s. n/s. n/s													
S99H000220 D. Barium-ICP-Acid Dil. Us/ml. 97.00 55.00e-02 5.5.050 m/s n/s n/s n/s 5.050 n/s 599H000220 D. Barium-ICP-Acid Dil. Us/ml. 99.40 55.00e-02 5.5.05e-01 n/s n/s n/s n/s 5.050 n/s 599H000220 D. Bertyllium-ICP-Acid Dil. Us/ml. 99.40 55.00e-03 55.05e-01 n/s n/s n/s n/s n/s n/s n/s 10.10 n/s 599H000220 D. Bertyllium-ICP-Acid Dil. Us/ml. 99.40 55.00e-03 55.05e-01 n/s n/s n/s n/s n/s n/s n/s n/s 10.10 n/s 599H000220 D. Cadatium-ICP-Acid Dil. Us/ml. 102.0 51.00e-01 5.95.59 n/s 10.10 n/s 599H000220 D. Cadatium-ICP-Acid Dil. Us/ml. 100.2 55.00e-05 55.		-1											
SSPH000220 Descripting D													
SSPH000220 D SEPTILITUM ICP-Acid DII. Ug/mL 99.40 5.00e-03 5.50e-01 f/a n/a n/a n/a n/a n/a n/a SSPH000220 D SESURI ICP-Acid DII. Ug/mL 102.0 1.00e-01 5.50e-01 n/a n/a n/a n/a n/a n/a n/a n/a N/a SSPH000220 D Cactium ICP-Acid DII. Ug/mL 102.0 1.00e-01 5.50e-01 n/a n/a n/a n/a n/a 10.10 n/a SSPH000220 D Cactium ICP-Acid DII. Ug/mL 102.2 4.80e-01 4.80e-01 n/a n/a n/a n/a n/a n/a 10.10 n/a SSPH000220 D Cactium ICP-Acid DII. Ug/mL 99.20 8.70e-02 2.510 n/a n/a n/a n/a n/a 10.10 n/a SSPH000220 D Cactium ICP-Acid DII. Ug/mL 99.20 8.70e-02 2.510 n/a n/a n/a n/a n/a n/a 1.010 n/a SSPH000220 D Cactium ICP-Acid DII. Ug/mL 99.20 8.70e-02 4.88e+02 n/a n/a n/a n/a n/a n/a 1.010 n/a N/a N/a n/a n/a n/a n/a 1.010 n/a			4.4447	Minus Transcriptor					***				
SSPH000220 D Sale Smuth-ICP-Acid Dil. Ug/ml. 192.40 1.00e-Dil. 27.88 18/6 N/a													
1999(00)220 0 Cabitum-IDP-Acid Dil. Us/ml. 102.0 11.00=01 95.90 20.00 10.00 10.40													
		_											
S99H000220 D Centum-ICP-Acid Dil. Ug/mL 100.2 38,000-03 3,010 N/a n/a n/a n/a 10.10 n/a 599H000220 D Cobatt-ICP-Acid Dil. Ug/mL 99.20 38,000-03 6.76ex03 n/a n/a n/a n/a 1.010 n/a 599H000220 D Copper-ICP-Acid Dil. Ug/mL 99.40 38,000-03 6.76ex03 n/a n/a n/a n/a 1.010 n/a 599H000220 D Iron-ICP-Acid Dil. Ug/mL 100.6 5.900-02 6.500-02 6.76ex03 n/a n/a n/a n/a 1.010 n/a 599H000220 D Iron-ICP-Acid Dil. Ug/mL 100.6 5.900-02 5.500 n/a n/a n/a n/a 1.010 n/a 5.900-02 5.900-02 5.500 n/a n/a n/a n/a 1.010 n/a 5.900-02 5.900-02 5.500 n/a n/a n/a n/a 5.050 n/a 5.900-02 5.90							CONTRACT	200000000000000000000000000000000000000					
SSPM000220 D Cobalt-TCP-Acid Dil. Ug/ml 99.20 SC00e-02 22.50 V/a V/a V/a V/a V/a 1.010 N/a SSPM000220 D Copper-ICP-Acid Dil. Ug/ml 99.20 Sc00e-02 38.8e02 N/a N/a N/a N/a N/a 1.010 N/a SSPM000220 D Copper-ICP-Acid Dil. Ug/ml 303.0 300e.02 38.8e02 N/a N/a N/a N/a N/a 1.010 N/a SSPM000220 D Copper-ICP-Acid Dil. Ug/ml 100.6 < 500e-02 38.8e02 N/a N/a N/a N/a N/a N/a 1.010 N/a SSPM000220 D Potassium-ICP-Acid Dil. Ug/ml 100.6 < 500e-02 38.8e02 N/a			The state of the s										
SSPM000220 D. Chromium-ICP-Acid Dil. Uu/ml. 40								******					
SSPM000220 D. Copper-ICP-Acid Dil. Ug/ml. SID 8. O. 9. O. 8. O. 9. O. 8. O. 8. O. 9. O.		_			99-40	%1.00e-02	‱6.76e+03			į			
S99M000220 D Iron-ICP-Acid Dil. Ug/mL \$100.6 \$3,808-02 \$1,828-04 n/a n/a n/a n/a 5,050 n/a 5,99M00220 D Petassi um-ICP-Acid Dil. Ug/mL \$100.8 \$5,008-02 \$5,050 n/a n/a n/a n/a n/a 7,0550 n/a 5,99M000220 D Lanthanum-ICP-Acid Dil. Ug/mL \$100.8 \$5,008-02 \$5,050 n/a n/a n/a n/a n/a 7,0550 n/a 5,99M000220 D Lithium-ICP-Acid Dil. Ug/mL \$100.8 \$5,008-02 \$5,050 n/a n/a n/a n/a n/a n/a 1,010 n/a 1,0		_											n/a
S99M000220 D Potassium-ICP-Acid Dil. Ug/mL 104,88 <5,00e.01 < 50.50 N/a N/a N/a N/a N/a N/a S0,50 N/a S99M000220 D Lintharum-ICP-Acid Dil. Ug/mL 100,88 <5,00e.02 <5,050 N/a N/a N/a N/a N/a N/a 5,050 N/a S99M000220 D Lintharum-ICP-Acid Dil. Ug/mL 100,88 <5,00e.02 <5,050 N/a N/a N/a N/a N/a N/a 1,010 N/a N/a N/a N/a N/a 1,010 N/a	S99M000220	D			100.6	<5000e-02	31282e+04	n/a	n/a	n/a	n/a	5.050	
S99M000220 D Lithium-ICP-Acid Dil. Ug/mL 100.8 <1.00e*02 < 1.010 n/a n/a n/a n/a 1.010 n		D				<5.00ex01	< 50.50	n/a	n/a				n/a
S99M000220 D Lithium-ICP-Acid Dil. Lug/mL 100.8 <1,00e*02 <1.010 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Magneseu-ICP-Acid Dil. Lug/mL 190.4 800e-01 49.00 n/a n/a n/a n/a 1.010 n/a S99M000220 D Magneseu-ICP-Acid Dil. Lug/mL 100.8 <1,00e-02 2.44e+02 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Molybdenum-ICP-Acid Dil. Lug/mL 100.4 <5,00e-02 39.60 n/a n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Sodium-ICP-Acid Dil. Lug/mL 100.6 <1,00e-01 3.67e+03 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Neodymium-ICP-Acid Dil. Lug/mL 100.6 <1,00e-01 <10.10 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Nickel-ICP-Acid Dil. Lug/mL 100.6 <1,00e-01 <10.10 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Nickel-ICP-Acid Dil. Lug/mL S99M00220 D Lead-ICP-Acid Dil. Lug/mL S99M00220 D Lead-ICP-Acid Dil. Lug/mL S99M00220 D Sulfur-ICP-Acid Dil. Lug/mL S99M00220 D Silicen-ICP-Acid Dil. Lug/mL S8.40 <1.00e-01 <10.10 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M00220 D Silicen-ICP-Acid Dil. Lug/mL S8.40 <1.00e-01 <10.10 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M00220 D Silicen-ICP-Acid Dil. Lug/mL S8.40 <1.00e-01 <10.10 n/a n/a n/a n/a n/a 10.10 n/a S99M00220 D Silicen-ICP-Acid Dil. Lug/mL S8.40 <1.00e-01 <1.00e-02 S3.20 n/a n/a n/a n/a n/a 10.10 n/a S99M00220 D Silicen-ICP-Acid Dil. Lug/mL S9.20 <1.00e-02 S9.20 n/a n/a n/a n/a n/a n/a 1.010 n/a S99M00220 D Sulfur-ICP-Acid Dil. Lug/mL	S99M000220	D	Lanthanum-ICP-Acid Dil.	ug/mL	100.8	<5.00e-02	< 5.050	n/a	n/a	n/a	n/a	5.050	n/a
S99M000220 D Manganese-ICP-Acid Dil. Ug/ml. 100.8/ 4.00e-02 2.44e+02 n/a n/a n/a n/a n/a 1.010 n/a	S99M000220	D		ug/mL////	\$.00.8	<1 _× 00e ² 02	< 1.010	n/a	n/a	n/a	n/a	1.010	n/a
S99M000220 D Molybdenum-ICP-Acid Dil. Ug/ml. 10024 <5.00e-02 3.67e+03 n/a n/a n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sodium-ICP-Acid Dil. Ug/ml. 102.2 <1.00e-01 3.67e+03 n/a n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Nickel-ICP-Acid Dil. Ug/ml. 100.6 <1.00e-01 <10.10 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Nickel-ICP-Acid Dil. Ug/ml. Ug/ml. 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a n/a n/a n/a n/a 2.020 n/a S99M000220 D Phosphorus-ICP-Acid Dil. Ug/ml. 100.6 <2.00e-01 <20.20 n/a n/a n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sulfur-ICP-Acid Dil. Ug/ml. 100.0 <1.00e-01 5.81e+03 n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sulfur-ICP-Acid Dil. Ug/ml. 100.2 <6.00e-02 22.30 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sulfur-ICP-Acid Dil. Ug/ml. 100.2 <6.00e-02 22.30 n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Silicon-ICP-Acid Dil. Ug/ml. 103.2 <5.00e-02 53.20 n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Samarium-ICP-Acid Dil. Ug/ml. 103.2 <5.00e-02 53.20 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sinamrium-ICP-Acid Dil. Ug/ml. 100.6 <1.00e-01 <10.10 n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Sinamrium-ICP-Acid Dil. Ug/ml. 100.2 <1.00e-02 <0.00e-02 <0.	S99M000220	D	Magnesium-ICP-Acid Dil.	ug/mi.	400.4	≼1.00e-01	49.00	n/a	n/a	n/a	n/a	10.10	n/a
S99M000220 D Sodium-ICP-Acid Dil. Lug/mL 102.2 <1.00e-01 3.67e+03 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Neodymium-ICP-Acid Dil. Lig/mL 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a n/a n/a n/a 10.10 n/a N99M000220 D Phosphorus-ICP-Acid Dil. Lig/mL 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a n/a n/a n/a 2.020 n/a	S99M000220	D			95.80	% 1.00e-02	2.44e+02	n/a	n/a	n/a	n/a	1.010	n/a
S99M000220 D Sodium-ICP-Acid Dil. Lug/mL 102.2 <1.00e-01 3.67e+03 n/a n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Neodymium-ICP-Acid Dil. Lig/mL 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a n/a n/a n/a 10.10 n/a N99M000220 D Phosphorus-ICP-Acid Dil. Lig/mL 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a n/a n/a n/a 2.020 n/a	S99M000220	D	Molybdenum-ICP-Acid Dil.	ug/mL *****	100.4	<5.00e-02	39.60	n/a	n/a	n/a	n/a	5.050	n/a
S99M000220 D Nicket-ICP-Acid Dil Sig/mL 98.80 <2.00e-02 2.06e+03 n/a n/a n/a n/a 2.020 n/a	S99M000220	D			102.2	<1.00e-01	3.67e+03	n/a	n/a	n/a	n/a	10.10	n/a
S99M000220 D Phosphorus-ICP-Acid Dil Dig/ml Dil Dig/ml Dil Dil Dil Dil Dil Dig/ml Dil Dig/ml Dil D	S99M000220	D	Neodymium-ICP-Acid Dil	tig/mL	100.6	<1.00e-01	< 10.10	n/a	n/a	n/a	n/a	. 10.10	n/a
S99M000220 D Lead-ICP-Acid Dilay Lead-ICP-Ac	\$99M000220	D	Nickel-ICP-Acid Dil	ug/mL	98.80	<2.00e-02	2.06e+03	n/a	n/a	n/a	n/a	2.020	n/a
\$99M000220 D Sulfur-ICP-Acid Dil. Ug/mL 100.0 <1.00e-01 5.81e+03 n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Antimony-ICP-Acid Dil. Ug/mL 100.2 <6.00e-02 22.30 n/a n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Selenium-ICP-Acid Dil. Ug/mL 98.40 <1.00e-01 < 10.10 n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Selenium-ICP-Acid Dil. Ug/mL 103.2 <5.00e-02 53.20 n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Samarium-ICP-Acid Dil. Ug/mL 100.6 <1.00e-01 < 10.10 n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Strontium-ICP-Acid Dil. Ug/mL 98.20 <1.00e-02 < 1.010 n/a n/a n/a n/a n/a 10.10 n/a \$99M000220 D Titanium-ICP-Acid Dil. Ug/mL 98.20 <1.00e-02 < 1.010 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Titanium-ICP-Acid Dil. Ug/mL 98.20 <1.00e-02 < 1.040 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Titanium-ICP-Acid Dil. Ug/mL 97.40 <2.00e-01 < 20.20 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Titanium-ICP-Acid Dil. Ug/mL 97.40 <2.00e-01 < 20.20 n/a n/a n/a n/a n/a 50.50 n/a \$99M000220 D Vanadium-ICP-Acid Dil. Ug/mL 102.0 <5.00e-01 1.70e+02 n/a n/a n/a n/a n/a 50.50 n/a \$99M000220 D Vanadium-ICP-Acid Dil. Ug/mL 99.80 <5.00e-02 30.70 n/a n/a n/a n/a n/a 50.50 n/a \$99M000220 D Zinc-ICP-Acid Dil. Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Zinc-ICP-Acid Dil. Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Zinc-ICP-Acid Dil. Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Zinc-ICP-Acid Dil. Ug/mL 100.0 <1.00e-02 <1.010 n/a n/a n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Chloride-IC-Dionex 4000/4500 Ug/mL 111.3 1.50e-02 62.61 n/a n/a n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 Nitrite-IC Dionex 4000/4500 Ug/mL 106.0 <1.08e-01 9.39e+05 n/a n/a n/a n/a n/a n/a n/a 1.42e+03 n/a \$99M000220 Nitrate by IC-Dionex 4000/4500 Ug/mL 106.0 <1.08e-01 9.39e+05 n/a n/a n/a n/a n/a n/a n/a n/a 1.42e+03 n/a	S99M000220	D			100.6	<2.00e-01	< 20.20	n/a	n/a	n/a	n/a	20.20	n/a
\$99M000220 D Antimony-ICP-Acid Wil.	S99M000220	D	Lead-ICP-Acid Oils	tig/mL	99.40	<1.00e-01	< 10.10	n/a	n/a	n/a	n/a	10.10	n/a
S99M000220 D Antimony-ICP-Acid Ug/mL 100.2 <6.00e-02 22.30 n/a n/a n/a n/a 6.060 n/a S99M000220 D Selenium-ICP-Acid Ug/mL 98.40 <1.00e-01 < 10.10 n/a n/a n/a n/a 10.10 n/a N/a 10.10 n/a S99M000220 D Silicon-ICP-Acid Dil Ug/mL 103.2 <5.00e-02 53.20 n/a n/a n/a n/a n/a 5.050 n/a S99M000220 D Samarium-ICP-Acid Dil Ug/mL 100.6 <1.00e-01 < 10.10 n/a n/a n/a n/a n/a 10.10 n/a S99M000220 D Strontium-ICP-Acid Dil Ug/mL 98.20 <1.00e-02 <1.010 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Titanium-ICP-Acid Dil Ug/mL 100.2 <1.00e-02 10.40 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Titanium-ICP-Acid Dil Ug/mL 97.40 <2.00e-01 <2.00e n/a n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Uranium-ICP-Acid Dil Ug/mL 102.0 <5.00e-01 7.0e+02 n/a n/a n/a n/a n/a 5.050 n/a N/a S99M000220 D Vanadium-ICP-Acid Dil Ug/mL 102.0 <5.00e-01 7.0e+02 n/a n/a n/a n/a 1.010 n/a S99M000220 D Vanadium-ICP-Acid Dil Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a 1.010 n/a S99M000220 D Zirc-ICP-Acid Dil Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Zirconium-ICP-Acid Dil Ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a S99M000220 D Zirconium-ICP-Acid Dil Ug/mL 111.3 1.50e-02 62.61 n/a n/a n/a n/a 1.010 n/a S99M000220 C C C C C C C C C	S99M000220	D	Sulfur-ICP-Acid Dil.	ug/mL	100.0	<1.00e-01	5.81e+03	n/a	n/a	n/a	n/a	10.10	n/a
\$99M000220 D \$\text{Siticon-ICP-Acid Dit} \times \text{ug/mL} \tag{mL} \tag	S99M000220	D			100.2	<6.00e-02	22.30	n/a	n/a	n/a	n/a	6.060	n/a
\$99M000220 D Samarium-ICP-Acid Dil	S99M000220	D	Selenium-ICP-Acid Dill	ug/mL	98.40	<1.00e-01		n/a	n/a	n/a	n/a	10.10	n/a
\$99M000220 D \$\text{Strontium-ICP-Acid Dil.} \text{ug/mL} \text{98.20} < 1.00e-02 < 1.010 \text{n/a} n/a	S99M000220	D	Silicon-ICP-Acid Dil	ug/mL	103.2	<5.00e-02	53,20	n/a	n/a	n/a	n/a	5.050	
S99M000220 D Strontium-ICP-Acid Dil. ug/mL 98.20 <1.00e-02 < 1.010 n/a n/a n/a n/a 1.010 n/a S99M000220 D Titanium-ICP-Acid Dil. ug/mL 100.2 <1.00e-02	S99M000220	D	Samarium-ICP-Acid Dil	ug/mL	100.6	<1.00e-01	< 10.10	n/a	n/a	n/a	n/a	10.10	n/a
\$99M000220 D Thattium-ICP-Acid Dit. ug/mL 97.40 <2.00e-01 < 20.20 n/a n/a n/a n/a n/a 20.20 n/a \$99M000220 D Uranium-ICP-Acid Dit. ug/mL 102.0 <5.00e-01 1.70e+02 n/a n/a n/a n/a n/a 50.50 n/a \$99M000220 D Vanadium-ICP-Acid Dit. ug/mL 99.80 <5.00e-02 30.70 n/a n/a n/a n/a n/a 5.050 n/a \$99M000220 D Zinc-ICP-Acid Dit. ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Zinconium-ICP-Acid Dit. ug/mL 90.60 <1.00e-02 5.76e+02 n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 D Zinconium-ICP-Acid Dit. ug/mL 90.60 <1.00e-02 < 1.010 n/a n/a n/a n/a n/a n/a 1.010 n/a \$99M000220 F Luoride-IC-Dionex 4000/4500 ug/mL 111.3 1.50e-02 62.61 n/a n/a n/a n/a n/a n/a 25.45 n/a \$99M000220 Chloride-IC-Dionex 4000/4500 ug/mL 108.3 <1.70e-02 < 36.06 n/a n/a n/a n/a n/a n/a 36.06 n/a \$99M000220 Nitrite-IC Dionex 4000/4500 ug/mL 106.0 <1.08e-01 9.39e+02 n/a n/a n/a n/a n/a n/a 1.42e+03 n/a \$99M000220 Nitrate by IC-Dionex 4000/4500 ug/mL 94.18 <1.39e-01 2.18e+05 n/a n/a n/a n/a n/a n/a 1.42e+03 n/a	S99M000220	D	Strontium-ICP-Acid Dil.	ug/mL	98.20	<1.00e-02	< 1.010	n/a	n/a	n/a	n/a		
S99M000220 D Thallium-ICP-Acid Dil. ug/mL 97.40 <2.00e-01 < 20.20 n/a n/a n/a n/a 20.20 n/a S99M000220 D Uranium-ICP-Acid Dil. ug/mL 102.0 <5.00e-01	S99M000220	D	Titanium-ICP-Acid Dil.	ug/mL	100.2	<1.00e-02	10.40	n/a	n/a	n/a		1.010	
S99M000220 D Uranium-ICP-Acid Dil. Ug/mL 102.0 <5.00e-01 1.70e+02 n/a n/a n/a 50.50 n/a S99M000220 D Vanadium-ICP-Acid Dil. Ug/mL 99.80 <5.00e-02	S99M000220	D	Thallium-ICP-Acid Dil.	ug/mL	97.40	<2.00e-01	< 20.20	n/a	n/a	n/a		20.20	
S99M000220 D Vanadium-ICP-Acid Dil. ug/mL 99.80 <5.00e-02 30.70 n/a n/a n/a 5.050 n/a S99M000220 D Zinc-ICP-Acid Dil. ug/mL 100.0 <1.00e-02	S99M000220	D	Uranium-ICP-Acid Dil.	ug/mL	102.0	<5.00e-01	1.70e+02	n/a	n/a				
S99M000220 D Zinc-ICP-Acid Dil. ug/mL 100.0 <1.00e-02 5.76e+02 n/a n/a n/a 1.010 n/a S99M000220 D Zirconium-ICP-Acid Dil. ug/mL 96.60 <1.00e-02	S99M000220			ug/mL	99.80	<5.00e-02	30.70	n/a	n/a	n/a	n/a	5.050	n/a
S99M000220 D Zirconium-ICP-Acid Dil. ug/mL 96.60 <1.00e-02 < 1.010 n/a n/a n/a n/a 1.010 n/a S99M000220 Fluoride-IC-Dionex 4000/4500 ug/mL 111.3 1.50e-02 62.61 n/a n/a n/a n/a 25.45 n/a S99M000220 Chloride-IC-Dionex 4000/4500 ug/mL 108.3 <1.70e-02	S99M000220				100.0	<1.00e-02	5.76e+02						
\$99M000220 Fluoride-IC-Dionex 4000/4500 ug/mL 111.3 1.50e-02 62.61 n/a n/a n/a 25.45 n/a \$99M000220 Chloride-IC-Dionex 4000/4500 ug/mL 108.3 <1.70e-02	S99M000220				96.60								
\$99M000220 Chloride-IC-Dionex 4000/4500 ug/mL 108.3 <1.70e-02 < 36.06 n/a n/a n/a 36.06 n/a \$99M000220 Nitrite-IC - Dionex 4000/4500 ug/mL 106.0 <1.08e-01					111.3								
\$99M000220 Nitrite-IC - Dionex 4000/4500 ug/mL 106.0 <1.08e-01 9.39e+02 n/a n/a n/a n/a 229.1 n/a \$99M000220 Nitrate by IC-Dionex 4000/4500 ug/mL 94.18 <1.39e-01 2.18e+05 n/a n/a n/a n/a 1.42e+03 n/a	S99M000220				108.3								
\$99M000220 Nitrate by IC-Dionex 4000/4500 ug/mL 94.18 <1.39e-01 2.18e+05 n/a n/a n/a 1.42e+03 n/a													
			Nitrate by IC-Dionex 4000/4500			The state of the s							

INTERIM

Page:

		T								
Sample# R A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %		Count Err%
\$99M000220 Sulfate by 1C-Dionex 4000/450		107.9	<1.38e-01	1.54e+04	n/a	n/a	n/a	n/a	292.7	n/a
\$99M000220 Sulfate by 16 broker 4000/450	ug/mL		<1.05e-01	<2.23e+02	n/a	n/a	n/a	n/a	222.7	n/a

Interim Data Summary Report 233S SCREEN

CORE NUMBER: n/a SEGMENT #: BOVFB1

OKITON: Liqui	<u>a</u>	· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , 	,	•		,				
Sample# R	 A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
\$99M000219	1///	Mercury by CVAA (PE) with FIAS		98.04	<7.00e-05	<1.4e-3	n/a	n/a	n/a	n/a	1.00e-03	
\$99M000219	1 -	pH Direct	Ha Ha	n/a	n/a	<0.5	n/a	n/a	n/a	n/a	1.00e-02	
\$99M000219	1	Strontium-89/90 High Level	uCi/mL	99.88	3.50e-02	<1.59e-06	n/a.	n/a	n/a	n/a	3.28e-06	
\$99M000219	1	Pu-239/240 by TRU-SPEC Resin	uCi/mL	101.6	<7.320	2.92e-04	n/a	n/a	n/a	n/a	1.28e-05	1.47E+00
S99M000219	1	Pu-238 by Ion Exchange	uCi/mL	n/a	<7.320	<1.28e-05		n/a	n/a	n/a	1.28e-05	4.33E+00
S99M000219		Np237 by TTA Extraction	uCi/mL	85.28	<4.86e-05	<2.38e-05	n/a		n/a	n/a	4.96e-05	2.97E+02
S99M000219	D	Silver-ICP-Acid Dil.	ug/mL	98.00	<1.00e-02	<2.00e-02	n/a	n/a	n/a	n/a	2.00e-02	· n/a
S99M000219	D	Aluminium-ICP-Acid Dil.	ug/mL	98.60		65,50		m/a	n/a	n/a	1.00e-01	n/a
S99M000219	D	Arsenic-ICP-Acid Dil.	ug/mL	100.4	<1.00e-01	%2.00@+01	°‱, n/a	n/a	n/a	n/a	2.00e-01	n/a
S99M000219	D	Boron-ICP-Acid Dil.	ug/mL	102.2	<5.00e-02	2.390	. "www.m/ta	n/a	n/a	n/a	1.00e-01	n/a
S99M000219	D	Barium-ICP-Acid Dil.	ug/mL	97.00	<5.00e+02	1.470		n/a	n/a	n/a	1.00e-01	n/a
S99M000219	D	Beryllium-ICP-Acid Dil.	ug/mL	99.40	<5.00e-03	<1.00e-02		n/a	n/a	n/a	1.00e-02	n/a
S99M000219	О	Bismuth-ICP-Acid Dil.	ug/mL	99.40	<1.00e-01	<2.008%01	m/a	n/a	n/a	n/a	2.00e-01	n/a
\$99M000219	D	Calcium-ICP-Acid Dil.	ug/mL	102.0	⊀1.00e-01		n/a	n/a	n/a	n/a	2.00e-01	n/a
S99M000219	D	Cadmium-ICP-Acid Dil.	ug/mL	101.2	<5.00e-03	≪1,00e÷02	n/a	n/a	n/a	n/a	1.00e-02	n/a
S99M000219	D	Cerium-ICP-Acid Dil.	ug/mL	100.2		<2,00e-01	n/a	n/a	n/a	n/a	2.00e-01	n/a
S99M000219	D	Cobalt-ICP-Acid Dil.	ug/mL <	99.20	<2.00e+02	1.110	n/a	n/a	n/a	n/a	4.00e-02	n/a
S99M000219	D	Chromium-ICP-Acid Dil.	ug/mL	99,40		45.80	n/a	n/a	n/a	n/a	2.00e-02	n/a
S99M000219	D	Copper-ICP-Acid Dil.	ug/mL	101.0	<1 _× 00e ² 02	7.60e-01	n/a	n/a	n/a	n/a	2.00e-02	n/a
S99M000219	D	Iron-ICP-Acid Dil.	ug/mL		.≼5⊚00e-02	2.86e+02	n/a	n/a	n/a	n/a	1.00e-01	n/a
	D	Potassium-ICP-Acid Dil.	ttg/mL	104.8	<5.00e-01	1.360	n/a	n/a	n/a	n/a	1,000	n/a
	D	Lanthanum-ICP-Acid Dil.	ug/mL	1008		<1.00e-01	n/a	n/a	n/a	n/a	1.00e-01	n/a
	D		ug/mL	100.8		<2.00e-02	n/a	n/a	n/a	n/a	2.00e-02	n/a
	D		tig/mL 🐃			2.250	n/a	n/a	n/a	n/a	2.00e-01	n/a
		Manganese-ICP-Acid Dil	ug/mL	95.80		5.200	n/a	n/a	n/a	n/a	2.00e-02	n/a
		Molybdenum-ICP-Acid Dil.	ug/mL	100.4		2.76e-01	n/a	n/a	n/a	n/a	1.00e-01	n/a
	_	Sodium-ICP-Acid Dil.	ug/mE	102.2	<1.00e-01	4.140	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	100.6		<2.00e-01	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	98.80		56.30	n/a	n/a	n/a	n/a	4.00e-02	n/a
			ug/mL	100.6	<2.00e-01	5.19e-01	n/a	n/a	n/a	n/a	4.00e-01	n/a
***************************************		Lead-ICP-Acid Dil.	ug/mL	99.40		2.22e-01	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	100.0	<1.00e-01	3.740	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	100.2	<6.00e-02	2.09e-01	n/a	n/a	n/a	n/a	1.20e-01	n/a
			ug/mL		<1.00e-01	<2.00e-01	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	103.2	<5,00e-02	49.00	n/a	n/a	n/a	n/a	1.00e-01	n/a
			ug/mL	100.6		<2.00e-01	n/a	n/a	n/a	n/a	2.00e-01	n/a
			ug/mL	98.20	<1.00e-02	4.62e-02	n/a	n/a	n/a	n/a	2.00e-02	n/a
		1,7 0011,1 1111	ug/mL	100.2	<1.00e-02	9.23e-02	n/a	n/a	n/a	n/a	2.00e-02	n/a
			ug/mL		<2.00e-01	<4.00e-01	n/a	n/a	n/a	n/a	4.00e-01	n/a
			ug/mL	102.0	<5.00e-01	< 1.000	n/a	n/a	n/a	n/a	1.000	n/a
			ug/mL			1.21e-01	n/a	n/a	n/a	n/a	1.00e-01	n/a
			ug/mL	100.0	<1.00e-02	6.630	n/a	n/a	n/a	n/a	2.00e-02	n/a
			ug/mL	96.60	<1.00e-02	2.32e-02	n/a	n/a	n/a	n/a	2.00e-02	n/a
S99M000219		Fluoride-IC-Dionex 4000/4500	ug/mL	111.3	1.50e-02	< 13.33	n/a	n/a	n/a	n/a	13.33	n/a

INTERIM

	$\neg \neg$	T	Υ	· · · · · · · · · · · · · · · · · · ·			r=	·		,	1	1
Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	 Count Err%
\$99M000219	T	Chloride-IC-Dionex 4000/4500	ug/mL	108.3	<1.70e-02		n/a	······································	n/a	· · · · · · · · · · · · · · · · · · ·	18.89	
S99M000219		Nitrite-IC - Dionex 4000/4500	ug/mL	106.0	<1.08e-01	<1.20e+02	n/a		n/a	n/a	120.0	
S99M000219		Nitrate by IC-Dionex 4000/4500	ug/mL	101.0	<1.39e-01	3.31e+04	n/a	n/a	n/a	n/a	154.4	n/a
S99M000219		Phosphate-IC-Dionex 4000/4500	ug/mL	105.3	<1.20e-01	<1.33e+02	n/a	n/a	n/a	n/a	133.3	n/a
S99M000219		Sulfate by IC-Dionex 4000/4500	ug/mL	107.9	<1.38e-01	<1.53e+02	n/a	n/a	n/a	n/a	153.3	n/a
S99M000219		Oxalate-IC-Dionex 4000/450	ug/mL	108.6	<1.05e-01	<1.17e+02	n/a	n/a	n/a	n/a	116.7	n/a
\$99M000219		Cobalt-60 by GEA	uCi/mL	110.2	<1.73e-05	<2.16e-05	n/a	n/a	n/a	n/a	2.16e-05	n/a
S99M000219		Antimony-125 by GEA	uCi/mL	n/a	<4.69e-05	<4.89e-05	n/a	n/a	n/a	n/a	4.89e-05	n/a
\$99M000219		Cesium-134 by GEA	uCi/mL	n/a	<1.61e-05	<1.59e-05	n/a	n/a	n/a	n/a	1.59e-05	n/a
\$99M000219		Cesium-137 by GEA	uCi/mL	101.2	<2.53e-05	<4.04e-05	.⊲n/a	n/a	n/a	n/a	4.04e-05	n/a
S99M000219		Europium-152 by GEA	uCi/mL	n/a	<3.25e-05	<3.43e-05	n/a	n/a	n/a	n/a	3.43e-05	n/a
\$99M000219		Europium-154 by GEA	uCi/mL	n/a	<5.48e-05	<5.33e-05	117a.	n/a	n/a	n/a	5.33e-05	n/a
S99M000219		Europium-155 by GEA	uCi/mL	n/a	<4.03e-05	<3.94e-05	‱ n∕a	n/a	n/a	n/a	3.94e-05	n/a
S99M000219			uCi/mL	n/a			. m/a	‱ n/a	n/a	n/a	2.86e-04	n/a
S99M000219			uCi/mL	n/a				m/a	n/a	n/a	9.17e-05	n/a
S99M000219		Americium-241 by GEA	uCi/mL	n/a	<9.41e-05	∞×1.01e+04	n/a	n/a	n/a	n/a	1.01e-04	n/a
S99M000219		Cobalt-60 by GEA	uCi/mL	n/a	n/a	<1.45e-05		n/a	n/a	n/a	1.45e-05	n/a
S99M000219		Antimony-125 by GEA	uCi/mL	n/a	n/a	₹5,4 4e-05		n/a	n/a	n/a	5.44e-05	n/a
S99M000219		Cesium-134 by GEA	uCi/mL	n/a	n/a	<1.47e-05	n/a	n/a	n/a	n/a	1.47e-05	n/a
S99M000219		Cesium-137 by GEA	uCi/mL	n/a	n/#	1.39e:03	n/a	n/a	n/a	· n/a	n/a	3.25
S99M000219		Europium-152 by GEA	uCi/mL	n/a		<3.92e*05	n/a	n/a	n/a	n/a	3.92e-05	n/a
S99M000219		Europium-154 by GEA	uCi/mL		n/a	44.43e-05	n/a	n/a	n/a	n/a	4.43e-05	n/a
S99M000219			uCi/mL	n/a	w n/a	<5.25e-05	n/a	n/a	n/a	n/a	5.25e-05	n/a
S99M000219		Radium-226 by GEA	uCi/mL	n/a	n/a	<3.61e-04	n/a	n/a	n/a	n/a	3.61e-04	. n/a
S99M000219		Actinium-228 by GEA	uCi/mL	n/a	∜n/a	<7.79e-05	n/a	n/a	n/a	n/a	7.79e-05	n/a
S99M000219		Americium-241 by GEA	uCi/mL	n/a	∞ n/a	1.88e-02	n/a	n/a	n/a	n/a	n/a	2.88
S99M000219	1		uCi/mL	108.3	<i>.</i> ≉2079e-06	2.21e-05	n/a	n/a	n/a	n/a	3.51e-06	1.25E+01
S99M000219		Am-241 by Extraction	t#Ci/mL****	99,06	<6.020	4.91e-05	n/a	n/a	n/a	n/a	5.90e-06	2.61E+00
S99M000219		Cm-243/244 by Extraction	uCi/mL	n/a	<6.020	<5.90e-06	n/a	n/a	n/a	n/a	5.90e-06	1.00E+02
S99M000219			uCi/mL	96.00	<4.55e-07	3.46e-04	n/a	n/a	n/a	n/a	7.88e-07	2.50E+00
S99M000219			ÜCi/mL		n/a	3.29e-04	n/a	n/a	n/a	n/a	3.68e-05	1.83E+01
S99M000219	\top	Beta in Liquid Samples	uCi/mL	n/a	n/a	8.01e-05	n/a	n/a	n/a	n/a	1.06e-04	1.07E+02
		A 1000 1000 A	· ******								·····	

Page:

CORE NUMBER: n/a SEGMENT #: BOVFB3

Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000221		Cobalt-60 by GEA	uCi/mL	n/a	n/a	<1.29e-04	n/a	***************************************	n/a		1.29e-04	
S99M000221		Antimony-125 by GEA	uCi/mL	n/a	n/a	<1.10e-02	n/a	n/a	n/a	n/a	1.10e-02	n/a
S99M000221		Cesium-134 by GEA	uCi/mL	n/a	n/a	<1.79e-03		n/a	n/a	n/a	2.00e-03	
S99M000221		Cesium-137 by GEA	uCi/mL	n/a	n/a	13.00	////n/a	n/a	n/a	n/a	n/a	0.100
S99M000221		Europium-152 by GEA	uCi/mL	n/a	n/a	<7.11e-03		n/a	n/a	n/a	7.00e-03	n/a
S99M000221		Europium-154 by GEA	uCi/mL	n/a	n/a	<4.96e-04		n/a	n/a	n/a	4.96e-04	· n/a
S99M000221		Europium-155 by GEA	uCi/mL	n/a	n/a	<8.40e=03		∭ n/a	n/a	n/a	8.00e-03	n/a
S99M000221		Radium-226 by GEA	uCi/mL	n/a	n/a	<6.89e+02			n/a	n/a	6.90e-02	n/a
S99M000221		Actinium-228 by GEA	uCi/mL	n/a	n/a	%9.89e+04	m/a	n/a	n/a	n/a	9.89e-04	n/a
S99M000221		Americium-241 by GEA	uCi/mL	n/a	n/a	1.960	n/a	n/a	n/a	n/a	n/a	1.94
S99M000221		Alpha in Liquid Samples	uCi/mL	n/a	n/.a	2.97e-01		n/a	n/a	n/a	2.93e-05	5.64E-01
S99M000221		Beta in Liquid Samples	uCi/mL	n/a	n∕a	6.37e-01	m/a	n/a	n/a	n/a	1.09e-04	2.99E-01

INTERIN

Interim Data Summary Report 233S SCREEN

CORE NUMBER: n/a SEGMENT #: BOVFB4

	- 1		1	ŀ								
Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000222		Cobalt-60 by GEA	uCi/mL	n/a	n/a	<1.57e-04	n/a	n/a	n/a	n/a	1.57e-04	n/a
S99M000222		Antimony-125 by GEA	uCi/mL	n/a	n/a	<1.08e-02	n/a	n/a	n/a	n/a	1.10e-02	n/a
S99M000222		Cesium-134 by GEA	uCi/mL	n/a	n/a	<1.76e-03		n/a	n/a	n/a	2.00e-03	n/a
S99M000222		Cesium-137 by GEA	uCi/mL	n/a	n/a	12.30	n/a	n/a	n/a	n/a	n/a	0.100
S99M000222		Europium-152 by GEA	uCi/mL	n/a	n/a	<7.05e-03	n/a	n/a	n/a	n/a	7.00e-03	n/a
S99M000222		Europium-154 by GEA	uCi/mL	n/a	n/a	<4.49e-04		n/a	n/a	n/a	4.49e-04	n/a
S99M000222		Europium-155 by GEA	uCi/mL	n/a	n/a	<8.33e-03		n/a	n/a	n/a	8.00e-03	n/a
S99M000222		Radium-226 by GEA	uCi/mL	n/a	n/a	<6.79e+02	‱. ∞n/a	m/a	n/a	n/a	6.80e-02	n/a
S99M000222		Actinium-228 by GEA	uCi/mL	n/a	n/a	%9.55e+04		n/a	n/a	n/a	9.55e-04	n/a
S99M000222		Americium-241 by GEA	uCi/mL	n/a	n/a	2.160	n/a	n/a	n/a	n/a	n/a	1.75
S99M000222		Alpha in Liquid Samples	uCi/mL	n/a	n/a	4,15e-03		n/a	n/a	n/a	2.93e-05	4.79E+00
S99M000222		Beta in Liquid Samples	uCi/mL	n/a		6.06e-01	n/a	n/a	n/a	n/a	1.09e-04	3.08E-01

CORE NUMBER: n/a SEGMENT #: BOVFB5

Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000223		Cobalt-60 by GEA	uCi/mL	n/a	n/a	4.09e-04	n/a	n/a	n/a	n/a	n/a	30.5
\$99M000223		Antimony-125 by GEA	uCi/mL	n/a	n/a	<1.19e-02	n/a	n/a	n/a	n/a	1.20e-02	n/a
S99M000223		Cesium-134 by GEA	uCi/mL	n/a	n/a	<1.93e-03		n/a	n/a	n/a	2.00e-03	n/a
S99M000223		Cesium-137 by GEA	uCi/mL	n/a	n/a	15.00		n/a	n/a	n/a	n/a	0.0900
S99M000223		Europium-152 by GEA	uCi/mL	n/a	n/a	<7.74e-03	m/a	n/a	n/a	n/a	8.00e-03	n/a
\$99M000223		Europium-154 by GEA	uCi/mL	n/a	n/a	<6.03e-04		n/a	n/a	n/a	6.03e-04	n/a
S99M000223		Europium-155 by GEA	uCi/mL	n/a	n/a				n/a	n/a	9.00e-03	n/a
S99M000223		Radium-226 by GEA	uCi/mL	n/a	n/a	<7.48e+02	‱. ∞n/a	m/a	n/a	n/a	7.50e-02	n/a
S99M000223		Actinium-228 by GEA	uCi/mL	n/a		≪%9.53€+04	'wy a	n/a	n/a	n/a	9.53e-04	n/a
S99M000223		Americium-241 by GEA	uCi/mL	n/a	n/a	2.380		n/a	n/a	n/a	n/a	1.75
S99M000223		Alpha in Liquid Samples	uCi/mL	n/a	m/a	6.50e-03		n/a	n/a	n/a	2.93e-05	3.84E+00
S99M000223		Beta in Liquid Samples	uCi/mL	n/a	n/a	7:37e-01	m/a	n/a	n/a	n/a	1.09e-04	2.78E-01

Interim Data Summary Report 233S SCREEN

CORE NUMBER: n/a SEGMENT #: BOVFB6

OKITON: LIG	414	· /·······················	1		ı		r"·					
Sample#	R A#	Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
S99M000224		Strontium-89/90 High Level	uCi/mL	n/a	n/a	l	n/a	n/a	n/a	n/a	7.29e-05	
S99M000224		Pu-239/240 by TRU-SPEC Resin	uCi/mL	101.6	<7.320	3.33e-05	n/a	n/a	n/a	n/a	6.25e-06	2.52E+00
S99M000224		Pu-238 by Ion Exchange	uCi/mL	n/a	<7.320	6.25e-06	n/a	n/a	n/a	n/a	6.25e-06	5.21E+00
S99M000224		Np237 by TTA Extraction	uCi/mL	85.28	<4 86e-05			n/a	n/a	n/a	4.96e-05	1.10E+01
S99M000224		Cobalt-60 by GEA	uCi/mL	110.0	<1.81e-05			n/a	n/a	n/a	2.10e-05	· n/a
\$99M000224		Antimony-125 by GEA	uCi/mL	n/a	<4.63e-05		‱n/a	n/a	n/a	n/a	8.52e-04	n/a
S99M000224		Cesium-134 by GEA	uCi/mL	n/a	<1.54e-05		. ∞n/a	🎎 n/a	n/a	n/a	1.63e-04	
S99M000224		Cesium-137 by GEA	uCi/mL	103.4	<3.99e-05	5.73e-01	∞ n/a	‱ n∕a	n/a	n/a	n/a	0.190
S99M000224		Europium-152 by GEA	uCi/mL	n/a		≪4.09ë+04		n/a	n/a	n/a	4.09e-04	n/a
S99M000224		Europium-154 by GEA	uCi/mL	n/a	<5.78e-05	≪5.28e-05	. n/a	n/a	· n/a	n/a	5.28e-05	n/a
S99M000224		Europium-155 by GEA	uCi/mL	n/a	<4.03e::05	3333330 33		n/a	n/a	n/a	4.77e-04	n/a
S99M000224		Radium-226 by GEA	uCi/mL	n/a				n/a	n/a	n/a	4.00e-03	n/a
S99M000224		Actinium-228 by GEA	uCi/mL		∞9.27e-05		n/a	n/a	n/a	n/a	9.70e-05	n/a
S99M000224		Americium-241 by GEA	uCi/mL		31ez05		n/a	n/a	n/a	n/a	1.00e-03	n/a
S99M000224		Cobalt-60 by GEA	uCi/mL	, m/a		<1.59e-04	n/a	n/a	n/a	n/a	1.59e-04	n/a
S99M000224		Antimony-125 by GEA	uCi/mL	/////// n/a	m/a		n/a	n/a	n/a	n/a	1.10e-02	n/a
S99M000224		Cesium-134 by GEA	uCi/mL	n/a		<1.83e-03	n/a	n/a	n/a	n/a	2.00e-03	n/a
S99M000224		Cesium-137 by GEA	uCi/mL	n/a	n/a	14.00	n/a	n/a	n/a	n/a	n/a	0.0900
S99M000224		Europium-152 by GEA	uCi/mL	m/a	∭ n∕a	<7.47e-03	n/a	n/a	n/a	n/a	7.00e-03	n/a
S99M000224		Europium-154 by GEA	uCi/mL	n/a				n/a	n/a	n/a	4.56e-04	n/a
S99M000224		Europium-155 by GEA	t#C17mL	an/a		<8.79e-03		n/a	n/a	n/a	9.00e-03	n/a
S99M000224		Radium-226 by GEA	uCi/mL	n/a			n/a	n/a	n/a	n/a	7.30e-02	n/a
S99M000224		Actinium-228 by GEA	uCi/mL	n/a	n/a		n/a	n/a	n/a	n/a	1.00e-03	n/a
S99M000224		Americium-241 by GEA		> n/a	n/a	3.44e-01	n/a	n/a	n/a	n/a	n/a	6.81
S99M000224		Beta in Liquid Samples	120,000,000 1100 1	101.2	<4.30e-04	5.80e-01	n/a	n/a	n/a	n/a	1.77e-04	3.25E-01
S99M000224		Am-241 by Extraction	uCi2mL	99.06	<6.020	3.90e-06	n/a	n/a	n/a	n/a	3.50e-06	7.08E+00
S99M000224		Cm-243/244 by Extraction	uC1/mL	n/a	<6.020	<3.50e-06	n/a	n/a	n/a	n/a	3.50e-06	
S99M000224		Alpha in Liquid Samples	uca/mt.	92.40	<2.49e-05	2.33e-02	n/a	n/a	n/a	n/a	3.26e-05	2.04E+00
S99M000224		Alpha in Liquid Samples	uCi/mL	n/a	n/a	3.22e-03	n/a	n/a	n/a	n/a	2.93e-05	5.47E+00
S99M000224		Beta in Liquid Samples	uCi/mL	n/a	n/a	6.10e-01	n/a	n/a	n/a	n/a	1.09e-04	3.06E-01
		0000000						· · · · ·				

CORE NUMBER: n/a SEGMENT #: BOVFC2

PORTION: Liq	uid											
Sample#		Analyte	Unit	Standard %		Result				Spk Rec %		Count Err%
S99M000225		Mercury by CVAA (PE) with FIAS		98.04		2.98e-02	n/a		n/a		1.00e-03	n/a
S99M000225		pH Direct	ρH	n/a		9.660			n/a		1.00e-02	n/a
S99M000225		13.13.13. 33. 113.13. 3.113	ug/mL	98.00		9.04e-01	n/a		n/a	n/a	2.10e-01	n/a
S99M000225		Aluminium-ICP-Acid Dil.	ug/mL	98.60		1.280		n/a	n/a	n/a	1.050	n/a
S99M000225	_	Arsenic-ICP-Acid Dil.	ug/mL	100.4			n/a	n/a	n/a	n/a	2.100	n/a
\$99M000225	<u> </u>	Boron-ICP-Acid Dil.	ug/mL	102.2		1.930			n/a	n/a	1.050	n/a
S99M000225	<u> </u>	Barium-ICP-Acid Dil.	ug/mL	97.00			S		n/a	n/a	1.050	n/a
S99M000225	_	Beryllium-ICP-Acid Dil.	ug/mL	99.40					n/a	n/a	1.05e-01	n/a
S99M000225	D	Bismuth-ICP-Acid Dil.	ug/mL	99.40		× 20100			n/a	n/a	2.100	n/a
S99M000225	_	Calcium-ICP-Acid Dil.	ug/mL	102.0		2.100	***************************************	n/a	n/a	n/a	2.100	n/a
S99M000225	<u>D</u>	Cadmium-ICP-Acid Dil.	ug/mL	101.2	<5.00e±03	<1.05e-01		n/a	n/a	n/a	1.05e-01	n/a
S99M000225	<u> </u>	Cerium-ICP-Acid Dil.	ug/mL	100.2				n/a	n/a	n/a	2.100	n/a
S99M000225	D		ug/mL		<2.00e-02		0.	n/a	n/a	n/a	4.20e-01	n/a
S99M000225	D	Chromium-ICP-Acid Dil.	ug/mL		*1. 00e-02	20:00	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	<u>D</u>	Copper-ICP-Acid Dil.	ug/mL		<1.00e-02	57270	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	D	Iron-ICP-Acid Dil.	ug/mL	100.6		1.350	n/a	n/a	n/a	n/a	1,050	n/a
S99M000225	D		ug/mL :		<5.00e+01	1.76e+02	n/a	n/a	n/a	n/a	10.50	n/a
S99M000225	D	Lanthanum-ICP-Acid Dil.	ug/mL	100.8		< 1.050	n/a	n/a	n/a	n/a	1.050	n/a
S99M000225	D	Lithium-ICP-Acid Dil.	ug/mL	8.00		<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	D	Magnesium-ICP-Acid Dil.	ug/mL	3100.4		< 2.100	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D		ug/mL		<1.00e-02	<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	D	Molybdenum-ICP-Acid Dil.	ug/mL	109.4		< 1.050	n/a	n/a	n/a	n/a	1.050	n/a
S99M000225	D	Sodium-ICP-Acid Dil.	ug/mL	102.2	<1.00e-01	1.30e+04	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D		tig/mL	100.6		< 2.100	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D		tug/mL	98.80		4.370	n/a	n/a	n/a	n/a	4.20e-01	n/a
S99M000225	D		ug/mL	100.6		1.73e+02	n/a	n/a	n/a	n/a	4.200	n/a
S99M000225	D		ug/mL%	99.40		< 2.100	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D		ug/mL	100.0		9.62e+02	n/a	n/a	n/a	n/a	2.100	n/a
\$99M000225	D	Antimony-ICP-Acid Dil.	ug/mL	100.2	<6.00e-02	< 1.260	n/a	n/a	n/a	n/a	1,260	n/a
S99M000225	D	Selenium-ICP-Acid Dill	ug/mL	98.40	<1.00e-01	< 2.100	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D	Silicon-ICP-Acid Dil	ug/mL	103.2	<5.00e-02	16.00	n/a	n/a	n/a	n/a	1.050	n/a
S99M000225	Ď	Samarium-ICP-Acid Dil	ug/mL	100.6	<1.00e-01	< 2.100	n/a	n/a	n/a	n/a	2.100	n/a
S99M000225	D	Strontium-ICP-Acid Dil.	ug/mL	98.20	<1.00e-02	<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	D	Titanium-ICP-Acid Dil.	ug/mL	100.2	<1.00e-02	<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	D	Thallium-ICP-Acid Dil.	ug/mL	97.40	<2.00e-01	< 4.200	n/a	n/a	n/a	n/a	4.200	n/a
S99M000225	lo.	Uranium-ICP-Acid Dil.	ug/mL	102.0	<5.00e-01	20.20	n/a	n/a	n/a	n/a	10.50	n/a
S99M000225	D	Vanadium-ICP-Acid Dil.	ug/mL	99.80	<5.00e-02	< 1.050	n/a	n/a	n/a	n/a	1.050	n/a
S99M000225	D		ug/mL	100.0	<1.00e-02	<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	TD.		ug/mL	96.60		<2.10e-01	n/a	n/a	n/a	n/a	2.10e-01	n/a
S99M000225	<u> </u>		ug/mL	111.3	1.50e-02	71.96	n/a	n/a	n/a	n/a	13.33	n/a
S99M000225	_		ug/mL	108.3		1.16e+02	n/a	n/a	n/a	n/a	18.89	n/a
S99M000225	\top		ug/mL	106.0		6.09e+02	n/a	n/a	n/a	n/a	120.0	n/a
\$99M000225		Nitrate by IC-Dionex 4000/4500			<1.39e-01	2.99e+04	n/a	n/a	n/a	n/a	154.4	n/a
S99M000225	\top		ug/mL		<1.20e-01	5.88e+02	n/a	n/a	n/a	n/a	133.3	n/a
		1								<u></u>	,	,-

INTERIM

Comple# P	A# Analyte	Unit	Standard %	Blank	Result	Duplicate	Average	RPD %	Spk Rec %	Det Limit	Count Err%
Sample# R S99M000225	Sulfate by IC-Dione		107.9	<1.38e-01	3.15e+03	n/a	n/a	n/a	n/a	153.3	n/a
S99M000225		000/450 ug/mL	108.6		2.44e+03	n/a	n/a	n/a	n/a	116.7	n/a

Esch, Ruth A

From:

Sent:

Trent, Stephen J Monday, May 17, 1999 4:32 PM Powell, Katherine L Esch, Ruth A

To: Cc:

Subject:

Supplementary Instructions and Clarifications

Please review the following supplementary instructions and clarifications regarding 233-S samples currently at the 222-S laboratory:

- Sample B0TW23 This sample (originally submitted in SDG 2) will be run in the same QC batch as the most 1) current set of samples (SDG 3), delivered on 5/10/99.
- Sample B0VFB1 In addition to the rad screen analysis, this sample will be analysed for all rad constituents (full protocol). These constituents include Np-237, Am-241, Cm-243, Pu-238/239/240, and Sr-90.
- 3) The Chain of Custody for samples B0VFB1, B0VFB2, B0VFB3, B0VFB4, and B0VFB5 has an "Item #3" entry in the special instructions box of the chain of custody. This special instruction does not pertain to any of the samples listed on this chain of custody, and should be disregarded.
- 4) Enless otherwise directed, please run all actinide analyses via AEA for SDG 3 samples. Rich Weiss needs to compare the ICP-MS to AEA data from the last set of samples (SDG 2) analysed at the laboratory. In the future, BHI may request the laboratory to run ICP-MS in lieu of AEA on certain samples for actinide analyses.

If you have any questions, comments, complaints, etc, please feel free to call me on 372-9651.

Thanks

Steve Trent

Esch, Ruth A

From:

Trent, Stephen J

Sent: To:

Friday, May 21, 1999 7:34 AM Esch, Ruth A; Powell, Katherine L

Subject:

RE: Additional clarification of analyses for 233-S samples

Ruth:

Thanks for reading our minds; this is exactly what we wanted done. Sorry for the confusion on B0VFB1. I think the seasawing on off-site vs. on-site analysis for this sample resulted in broken communication between the sampler and myself regarding the analytes of concern. Hopefully you have enough volume to run the additional analyses...

Steve

From:

----Original Message--Esch, Ruth A

Sent:

Thursday, May 20, 1999 6:56 PM

To:

Trent, Stephen J: Powell, Katherine L

Subject:

RE: Additional clarification of analyses for 233-S samples

Steve.

On B0VCW3, we ran radscreen GEA with no QC, but for the radscreen alpha/beta, I included a standard and blank. Therefore, when you requested GEA on the chain of custody for B0VFB2, I added an additional GEA test to B0VCW3 (since it is basically the same sample) with just the analytes listed in the Analytical Instructions and I will run a standard and blank with that batch.

Does that answer your question? Is that what you expected?

Ruth

----Original Message----From: Trent, Stephen J

Sent:

Thursday, May 20, 1999 12:24 PM Powell, Katherine L

To:

Cc:

Esch, Ruth A

Subject:

Additional clarification of analyses for 233-S samples

Importance: High

Kathy:

There seems to be some confusion over the requested analyses for the 233-S nitric sample (B0VFB1) that was originally destined to go off-site. The following is the list of analyses that need to be run on this sample:

GEA (w/ QC stipulated in the 233-S analytical instructions)

Gross Alpha/Gross Beta (w/ QC stipulated in the 233-S analytical instructions)

pН

ICP Metals (totals)

Hg (total)

Anions Pu-iso

Am-iso

Np-237

Cm-243/244

Also, could you check with Ruth and make sure she is running "full QC" GEA, Gross Alpha and Gross Beta analyses for either BOVCW3 or BOVFB2 (the Blue Liquid samples). Her sample analysis diagram seems to indicate that one of these samples will have a full QC GEA, Gross alpha and gross beta analysis, but I need to make sure; there is possibility of confusion here since a GEA, Gross Alpha, and Gross Beta rad screen was originally performed on one of these samples...

Thanks

Steve

Esch, Ruth A

From:

Sent:

Trent, Stephen J Wednesday, June 09, 1999 9:20 AM Esch, Ruth A Powell, Katherine L

To: Cc:

Subject:

Additional Instructions on 233-S samples

Ruth:

Sample B0VFB6 is a rad screen only sample for GEA, gross alpha, and gross beta.

Sample B0VFC2 is should be run according to the requirments in the 233-S Al for the following analyses:

Gross alpha Gross beta

Pu-iso

Np-237 Am-241/Cm-244

Sr-90

pH ICP metals

Hg

anions

Note that sample B0VFB6 and B0VFC2 are the same material, and can be used to supplement each other as needed to meet analytical volume requirements.

Regards,

Steve

233-S Pu Concentration Facility Samples - SDG3 East Duct Coupon B0TW23

233-S Pu Concentration Facility Samples - SDG 3

233-S Pu Concentration Facility Samples - SDG 3

B0VCW3

B0VFB2 same as B0VCW3

B0VFB1

B0VFB3

S99M000210

GEA - screen Total Alpha Total Beta GEA: Am-241, Sb-125, Co-60, Cs-134, Cs-137, Eu-152, Eu-154, Eu-155, Ra-226, Ac-228 Np-237

Sr-90

Am-241/Cm-243

Pu-238/Pu-239/240

S99M000220

pH Hg IC: anions ICP: metals

S99M000219

GEA - screen
Alpha/ Beta - screen
pH Hg
ICP: metals IC: anions
Total Alpha/Total Beta
GEA: Am-241, Sb-125,
Co-60, Cs-134, Cs-137,
Eu-152, Eu-154, Eu-155,
Ra-226, Ac-228
Np-237
Sr-90
Am-241/Cm-243

S99M000221

Alpha/Beta -screen GEA - screen

B0VFB4

S99M000222

Alpha/Beta -screen GEA - screen

B0VFB5

S99M000223

Alpha/Beta -screen GEA - screen

B0VFB6

Pu-238/Pu-239/240

S99M000224

Alpha/Beta - screen GEA - screen Total Alpha/Total Beta GEA: Am-241, Sb-125, Co-60, Cs-134, Cs-137, Bu-152, Eu-154, Eu-155, Ra-226, Ac-228 Np-237 Sr-90 Am-241/Cm-243

Pu-238/Pu-239/240

B0VFC2 same as B0VFB6

S99M000225

pH Hg IC: anions ICP: metals

Bechtel Hanford I	nc.	CH	IAIN OF CUST	TODY/SA	MPLE	ANALY	SIS R	EQUEST				Page <u>1</u>	of <u>1</u>
ollector Tob: Adoir	l	Compa	eny Contact	Telephone			\$	oject Coordir Foy e Tr o		Data Tu	rnaround		
roject Designation	<u> </u>	Sampl N O	ing Location ptumium to Logbook No.	vesch	line	L-18 XA	w X	NF No. 3 <i>99–02</i> 5 ethod of Ship	-	7 0	days		
te Chest No. FRC 97 - Chipped To	79	l E	FL 1/33 ~ 7 Property No.	<u> </u>			Bi	Hang d	<i>l cliver</i> Air Bill No.	•	····		
クォー) Vaste Designation			· · · · · · · · · · · · · · · · · · ·					COA R 2	33.4	T 21	FOC		
POSSIBLE SAMPLE HAZAR	DS/REMARKS		Preservation	None									
		:	Type of Container	ρ									
Special Handling and/or Stora	ge.		No. of Container(s)	1									
Special framuling and/or Stora			Volume	30 ml							<u> </u>	ļ	_
	SAMPLE ANA	LYSIS		CEA Totol Alpha Beta	<i>,</i>					,			
Sample No.	Matrix *	Sample Date	Sample Time		487 A.M.	100000	74.00	F Made	MARINE.	TO KEY	教育的	1999	9 4499
BOVEWZ	WM	4-22-99	1025	+X			<u> </u>						-
											<u> </u>	<u> </u>	
CHAIN OF POSSESSION	· · · · · · · · · · · · · · · · · · ·	_	int Names	Date/Time	1	CIAL INSTE	RUCTION	s	,l	<u> </u>	. I .		oil ediment
Relinquished By Toby Adair Long Adair Relinquished By Oug Dowers Relinquished By	Date/Time Received By Pare Time Received By Received By Received By				333	. 10	, -	•				DL - D	ludge Vater vil vrum Solids vrum Liquids vissue Vipe
Relinquished By	nquished By Date/Time Received By											v - v x - o	iquid /egetation)ther
LABORATORY Received By SECTION				Ť	tle							Date/Time	
FINAL SAMPLE Disposal M				•		Dice	osed By					Date/Time	

Bechtel Hanford	Inc.	. C	HAIN OF CUS	ΓODY/SΑ	MPLI	E ANAL	YSIS I	REQUES?	7		9-024-03	Page <u>l</u>	ot Ī -
Collector Doug Bowers		Com	pany Contact ve Encke	Telephon 373-34]	Project Coordii FRENT, SJ	ator P	rice Code	IV/FE	Data Tui	rnaround
Project Designation 233-S Plutonium Concentrati	on Encility Process An	Samp	oling Location 3-S 200 west			<u></u> .		SAF No. B99-024		4,	5 day	4	
Ice Chest No.	Off Pacifity 1100033 710	Field	Logbook No.				- 1	Method of Ship	ment) 	
			L 1133-7			·		hand carry Bill of Lading/A	ir Dill No				
Shipped To 222-S Lab Operations		Ulisi	te Property No.			<u></u>		om or Cading/2	u bu ro.				
						· ····································		COA R 2	335T	260	30		1
POSSIBLE SAMPLE HAZA			Preservation	None									
Bags have his	y smcarobl	e alpha	Type of Container	Poly Bag									
internally.			No. of Container(s)	1									
Special Handling and/or Stor	age		Volume	2L							1		
	SAMPLE ANA	LYSIS	I	See item (1) in Special Instructions.									
Sample No.	Matrix *	Sample Date	Sample Time		a jana		سنننسب بنسيد			100 P. Y.			(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
B0VF98	Other Solid	5.6-99	15 20	Х	•		1/2"		Line	#6			
B0VF99	Other Solid	5-6-99	1530	Х)"		Lino	#4			
B0VFB0	Other Solid	5-6.99	1540	Х	-		ي"		L Mag	#10		<u></u>	
					· . -								
CHAIN OF POSSESSION Relinquished By DOG 9 B own	Date/Time	_	int Names	ate/Time	Item	 TAL INSTR 1 GEA, gross 2 ICP (TCLP	alpha, gro	ss beta, isotopic P	ı, Np-237, an	d Am-241,5/k-	243/244 243/244	Matrix Soil Water	
DangBamen	1-10-99/121 Date/Time	Received By	DU TAMWERHY	<u> 5/10/94 12</u>	/2 Herr	# 3 Anions and	рн й	50 1-19	9			Other Solid Other Liquid	i
Relinquissed By	D	atc/Time	(1) (Samma Spectro	scopy {Ап	ر ericium-241, Cesi	•	it c-60, Europh i	n=152.				
Relinquished By	Date/Time	Received By	D	ate/Time		,		Radium 226) -	1				
Relinquished By	Date/Time	Received By	D	atc/Time	S 6	aldme	es i ich ec	c vofle tep.bys	ecys a	an an 7 L n. 13 o	ney		
LABORATORY Received By				Title	<u> </u>		•		· · · · · · · · · · · · · · · · · · ·	C 14	D	ate/Time	
FINAL SAMPLE Disposal Mo	ethed .			·		Dispo	sed By	1 - 2 to - 12 2 to - 12			D	atc/Time	· · · ·

Bechtel Hanford	Bechtel Hanford Inc. CHAIN OF CUSTODY/SAMPLE ANA						E ANAL	YSIS I	REQU	JEST	Γ	В	99-025-04	Page <u>I</u>	of <u>2</u> -
Collector Doug Bowers			Comp Dav	any Contact re Encke	Telephor 373-34				Project C TRENT, S	Coordi: SJ	nator I	rice Code	IV/FE	Data Tu	rnaround
Project Designation 233-S Plutonium Concentrati	on Facility Pr	ocess Area		ing Location -S bldg 200 west					SAF No. B99-025			45	daus		
Ice Chest No.				Logbook No. 1133-7					Method o		ment	•			
Shipped To 222-S Lab Operations			Offsite	Property No.					Bill of La	ding//	Air Bill No				
	<u> </u>								COAR	<u> </u>	57	D600	>		
POSSIBLE SAMPLE HAZA	RDS/REMA	RKS		Preservation											
composive				Type of Container	P	P									
Special Handling and/or Stor	age			No. of Container(s) Volume	l . 20mL	1 20 125mL									
none				Volume	See item (1) in	See item (1) in	-77							 	<u> </u>
	SAMPI	LE ANAL	YSIS		Special Instructions.	Special thistructions.									
Sample No.	Matrix	* 1	Sample Date	Sample Time		Aclow		\$5000 E		ads.	975,000/10				104514 K-577
B0VFB1	Other Li		5.6.99	1435	X	Michael Princs	21.00	11.0		3-0		* *************************************			
B0VFB2	Other Li		5.6-89	1425		X		edd.	on to	B	DUCU	/} pr	evious	ly texe	n 4-22-79
B0VFB3	Other Li	quid	5-6-98	1350	X		L3-00	·							
B0VFB4	Other Li	quid	5.6.99		Х		23-0								
B0VFB5	Other Li	quid	5-6-89	1400	X		L3-0					<u> </u>			<u></u>
CHAIN OF POSSESSION			Sign/Prir		atc/Time	**)(priori	TAL INSTR limited sample ty. Item # 2 44, Sr-90, and	e volume is pH, ICP in	available,	contact ury, ani	Sample Man ons,isotopic	agement for a Pu, Am-241,	nnalyses Np237, Cm-	Matrix Soil Water	(*
Relinquished By Doug Bow C	Date/Tir	ne / (1/2)	Received By	M/74 MURPHY	5/10/99/20 ate/Tithe	72 m c	iross Alpha; Gi t-60, Europiun urianr-214, N e	ross Beta: (Ganma Spe	ectrosco Europi	py (Americi um-155, Rad	um-241, Cesi ium-226}; Ar	um-137, noticium - 1 (7-47-56	Vapor Other Solid Other Liqui	
Relinquished By	Date/Tir	ne	Received By	D:	atc/Time								1045, m-243/		
Relinguished By	Datc/Tii	ne	Received By	Da	ate/Time	۱۵ م	14, 51	-90.	/T M ~	₹ 11) ~ P				
LABORATORY Received By			. J. <u></u> ,	,	Titl	e .						, . 		Date/Time	
SECTION FINAL SAMPLE Disposal Mo DISPOSITION	ethod			 		<u> </u>	Dispo	sed By						Date/Time	<u>. ,</u>

Bechtel Hanford Ir	ıc.		CHAIN OF CUST	rody/s.	AMPLE	ANAL	YSIS	REQUES	Г	B	99-025-04	Page 2	of <u>2</u> •
Collector Doug Bowers	<u> </u>		mpany Contact Dave Encke	Telephor 373-34				Project Coordi TRENT, SJ	nator 1	rice Code	IV/FE	Data Tu	ırnaroun d
Project Designation 233-S Plutonium Concentration	Facility Process Ar		npling Location 233-S bldg 200 west					SAF No. B99-025		43	5 day	<	
Ice Chest No.	······································		ld Logbook No. EFL 1133-7	.= ,, , ,,,	·	····		Method of Ship Hand deliver			y	.,	
Shipped To 222-S Lab Operations			site Property No.	•				Bill of Lading/					
		<u> </u>						COARZ	335T	760	O		
POSSIBLE SAMPLE HAZARI	OS/REMARKS		Preservation										
correstve			Type of Container	P	P	ρ							
Special Handling and/or Storag	e		No. of Container(s) Volume	1 20mL		aom)							
	SAMPLE ANA	LYSIS	1000	See item (1) in Special Instructions. (Septem (1) in Opecial Costructions.	Sec item # 3 below							
Sample No.	Matrix *	Sample Da	te Sample Time	75/55/5			STATE OF	7.97.78				多种类数	
B0VFB6	Other Liquid	5-6-19	9 1330	X							<u> </u>		GG X
B0VFC2	Other Liquid	5-6-9	9 1330			Х	ļ	20 m	addo	<u>ት ታ</u> ਫ਼!	<u>gov fb</u>	6 43.	66 2
							_						ļ
<u> </u>							<u> </u>						
CHAIN OF POSSESSION Relinquished By 10 45 Day 15	inquished By Dows Dowers Date Time Received By					y. Item #2 14, Sr-90, and ross Alpha; G	e volume is pH, ICP m GEA. ross Beta; (available, contact etals, Mercury, and Gamma Spectrosco	ions,isotopic	Pu, Am-241, h um-241, Cesiu	Np237, Cm- um-137,	Matrix Soil Water Vapor Other Solid	
Relinquisty d By	Date/Time	Received By	7 / L Da	ite/Fim	- 241/C	t-60, Europiun urium-344; N o	n-152, Euro -ptunium-2	ppium-154, Europi 37: Isotopie-Plutor	um-155, Radi itum; Strontit	ium-226}; Am m-90 🕻 🎞 🗸	oridium-	Other Liquid	
Relinquished By	Date/Time	Received By	Da	nte/Time	I.	TEM ?	₹3 p	Н, <u>Т</u> СР Ам-29,	meto	is, Ho	, on ions) /	
Relinquished By	Date/l'ime	Received By	Da	nte/Time	15 9	topic 4, Sr	-90	AM 7071	י קייי, ו	- / , \	7 07	/	
LABORATORY Received By SECTION		<u> </u>		Tid		-/	•	• · · · ·	· ····			Date/Time	-
FINAL SAMPLE Disposal Metho	od	· · · · · · · · · · · · · · · · · · ·	······································			Dispo	sed By				r	Date/Time	

	REQUEST FO	OR SAM	PLE ANA	LYSIS (RSA)			Group ID No. (ror lad use only).	
Sample Origin Z 3 3 - 5	Building	<i>\</i>	22/99	4. Requestor's Na STEUE	me TRE		6 CACN/COA 108798/EH	HOD	7
∎storner/Project Cod	HAN FORD	<u>3. و رويان</u>	Submitted By DOUG	BOWER	5	5. Reques 3 7 2 -	tor's Phone/MSII 9651/H9	WFAX 1-03/372-948	17
Customer ID No.	9. Laboratory Sample No	10. Volume of Sample	11. Matrix of Sample	. 12	. Reque	sted Analyses		13. Expected Rang	18
ØVCW3	S99M000210	5ml	liquid	GEA, G	<u> 1055</u>	ひ、あ			
<u>, , , , , , , , , , , , , , , , , , , </u>				(see c	hai	n. of c	ustody)		_
		·							4
	3.								4
		<u> </u>		-			<u></u>		\dashv
							· · · · · · · · · · · · · · · · · · ·		-
<u> </u>	,	 		•					\dashv
		<u> </u>			· · · · · ·			,	\dashv
. Does sample ha	ve a MSDS7	<u> 1</u>	<u></u>					<u></u>	ᅱ
5. Is this sample Ri Applicable Lister Yes Yes Yes Yes Yes Yes	No P Codes: (list) No U Codes: (list) No K Codes: (list)	Qu.		Applicable C O Yes O Yes O Yes	O No O No O No	D001: (how o	letermined) letermined) letermined) des)	Corrosiv	ve
Yes Ov	rer 500 ppm rer 50 ppm CBs are suspected CBs are suspected			source of the PCBs7 pacitor, or ballast	•				
- ·				1	Sample(s	Dose Rate at 0	Contact Contact	1	- -
7. QC Required	Per 222-S Laborato				-016) SCYE	en			
T1 -	lons (Special Storage I Sample 112 O. C	Requirement	s, Reporting fo	rmat, holding times,		_		round Time]4 Weeks 48 hrs	
20. Sample Receiv	eg Ey:		·4-22 Date		1333	21. 0	No Ye		
			 .			N	(umber:		

	REQUEST F	OR SAM	IPLE ANA	LYSIS (RS	SA)		Group ID N	. (POT 181	b use only)
1. Sample Origin 23	3-5 FACTL	TTY 2.	Date Samples	4. Requestor		RENT	6. CACN/0		7. Cost Center
Customer/Project Con Bechtel	Hanford I	3.	Submitted By			5. Regi	uestor's Phone/l	MSIN/FAX	83/372-948
. 8. Customer ID No.	9. Laboratory Sample No.		11, Matrix of Sample			ested Analyse	7		Expected Range
BØVF98			1 dia	. Pipe	-See	2 60	CAD65	10	333
BØV F99			I"dia		- 5e	e C0		0,00	00106 g
BØV FBØ			2"dia		- 5e	e (0	<u> </u>	0.00	00/069
BOVFB1	599M 000219		lauid	Rad	screev	only	(see (C)C) &	5 9
BOVFBZ	559M000220		1.quid	Sec	60	<u> </u>		10	.469
BOVFB3	599MOOD 221		liguid	Rad	EVECL	only	(see (0	() <u>()</u>	4600
BOVFB4	599M000 222		1.quid	Rad:	screer	only	(sec COC	20 [2]	.464
BOV FB5	S99M000223		1.guid	•			(Sec CO	-/1	469
	599m000224		1. gnid			- 1	VISCO (O	- 6 I -	11/4
14. Does sample have O'Yes HEHF; O'No Descrip	assigned MSDS No tion of process that pro	duced waste	//sample:	_ BØ V F	81 8	-04.\ -01.\ 1 Len	BOVFBG BOVFBG BOVFBG BOVFBS	12.3 12.3 12.3 12.3	
Will radiochemis	try results be used for t	inconditional	release?	Yes No					
	CRA listed? O Yes								
Applicable Listed	Waste Codes:			Applicat	le Character				
O Yes O	, , ,			– Ö,			v determined) _ v determined) _		
	No U Codes: (list), No K Codes: (list)			_	es No	-	v determined) _ v determined) _		
	No F Codes: (list)				'es O No		codes)		
PCB: Does this v	waste/sample contain F	CBs?		_	_	,		•	
Yes Ove	* -	_		ource of the PCE					j
_ =	er 50 ppm Bs are suspected		ranstormer, cap ther, specify _	actor, or ballast	; ,				
1 1	Bs are suspected		nknown		·				
16. Sample Disposit				,	Sample(s) Dose Rate a	t Contact	·	
Return to Cu					17	D mlz	w/ha_	<u></u>	
· —	nd to contain PCBs will er facility procedures w				HPT Sign	ature	15		
	Per 222-S Laborato								7
1 '	Other (list reference				welst	11 Tz	structi	on 5/	Rad
	ons, (Special Storage F								Fiel Instructi
Sec (chains o	ot Cu	stod)	/ .		5	ce と35-5 □2Weeks	الإلىمزام. 4 Wee∐	reci-Instructi Ks
LOCKEN 1	1) (FOI#	7	•			1	Mother Rac	_	
20. Sample Receive	d _P y:		1 1 2	-	·:		Chain of Custon		- bisings
Muna	M	<u> </u>	5/10/09		1212		ONO D	ľ	uays
- ~ P	1	 .	Date !		Time		Number		

1							Page	2 of 2
	REQUEST F	OR SAI	VIPLE ANA	ALYSIS (RSA)				(For lab use only)
1. Sample Origin 🤿 🕽	1) = E .: 1'	4	2. Date Sample	d 4. Requestor's Na	ime		6. CACN/COA	7. Cost Center
1. Sample Origin 23	13-3 racin	γ '	5/6/99	STEVE 3	T. T	RENT		
Customer/Project Coo	le (/	, _	3. Submitted By			5. Req	uestor's Phone/MSI	N/FAX /
Bechtel	Hantord	Inc.	Doug	Bowers		372	-9651/H9	-Ø3/372-948.
. 8. Customer ID No. 2	が多、Laboratory Sample No.	10. Volum of Sample			2. Reque	sted Analyse	es	13. Expected Range
BOVEB 7	599M000225		land	Sec CC	06			0.46g
C 2			7.00					0
					· .			
<u>.</u>						 .		
			<u> </u>					
	_				-			·
		 				······································		
		<u></u>						
, , , , , , , , , , , , , , , , , , ,		<u> </u>						<u> </u>
		<u> </u>						
14. Does sample hav		•			CE	Svalue	<u>.</u>	
1 7	assigned MSDS No			<u> </u>	an	VEC 2	12.3	
No Descrip	tion of process that pro	oduced was	te/sample:		Dje	,,,,,		
						-		
Will radiochemist	ry results be used for	uncondition	al release? C	Yes No	· · · · · · · · · · · · · · · · · · ·			***************************************
	· · · · · · · · · · · · · · · · · · ·	-	(<u> </u>		-,	 	
· Applicable Listed	CRA listed? Yes	Q No		Applicable C	haradet	ietic Codee:		
	No P Codes: (list)				-		w determined)	lgnitable
~ ~	No U Codes: (list)		<u> </u>		_			Corrosive
	No K Codes: (list)				Ŏ№			Reactive
○ Yes ○	No F Codes: (list)			Yes	Ŏ№	Toxic: (list	t codes)	
PCB: Does this v	waste/sample contain l	PCBs?		•				
Yes Ov	er 500 ppm	If Y	ES, what is the	source of the PCBs?				
1 =	er 50 ppm			pacitor, or ballast				
J	Bs are suspected			· · · · · · · · · · · · · · · · · · ·	_		•	
16. Sample Disposit	Bs are suspected		Unknown		Sample/s) Dose Rate	at Contact	
Return to Cu					-a.upic/a	1	n Reus	//
	nd to contain PCBs wil	l be returne	d to the custom	er –	 -		'IA	n
☐ Dispose of p	er facility procedures v	vith applied	charges for ana	lyses and disposal	HPT Sigr	nature (X)	MJYM—	
17. QC Required	Per 222-S Laborat	ory Quality		(HNF-SD-CP-QAPP-	016)			, 1
	Other (list reference					Tustu	actions /	Rad Screen
	ons (Special Storage							7.0
	chain o].0	_5ee 21	ound Time 3-5 Ahalytical 14 Weeks IKT
					•		_ 7	_
FOCKED	IN CELL#	2				1	MOther 12cd	
20. Sample Receive						21	. Chain of Custody	da)
1 WAMU	nshi		5/10/9	4Q 12	212		ONo OYe	
	7 7		Date	Tin	ie		Number:	
<u> </u>								